Operator’s Manual
Chameleon Ultra™ and
Chameleon Vision™
Diode-Pumped Lasers
This document is copyrighted with all rights reserved. Under the copyright laws, this document may not be copied in whole or in part or reproduced in any other media without the express written permission of Coherent, Inc. Permitted copies must carry the same proprietary and copyright notices as were affixed to the original. This exception does not allow copies to be made for others, whether or not sold, but all the material purchased may be sold, given or loaned to another person. Under the law, copying includes translation into another language.

Coherent, the Coherent Logo, Chameleon Ultra, Chameleon Vision, Verdi, PowerTrack, FAP-I and FieldMax are registered trademarks of Coherent, Inc.

Every effort has been made to ensure that the data given in this document is accurate. The information, figures, tables, specifications, part numbers and schematics contained herein are subject to change without notice. Coherent makes no warranty or representation, either expressed or implied, with respect to this document. In no event will Coherent be liable for any direct, indirect, special, incidental or consequential damages resulting from any defects in its documentation.

Technical Support

In the United States:

Should you experience any difficulties with your laser or need any technical information, visit our web site www.Coherent.com. Additional support can be obtained by contacting our Technical Support Hotline at 1-800-367-7890 (1-408-764-4557 outside the U.S.) or E-mail (Product.Support@Coherent.com). Telephone coverage is available Monday through Friday (except U.S. holidays and company shutdowns).

If you call outside our office hours, your call will be taken by our answering system and will be returned when the office reopens.

If there are technical difficulties with your laser that cannot be resolved by support mechanisms outlined above, E-mail or telephone Coherent Technical Support with a description of the problem and the corrective steps attempted. When communicating with our Technical Support Department, via the web, telephone, or E-mail, the model and Laser Head serial number of your laser system will be required by the Support Engineer responding to your request.

Outside the United States:

If you are located outside the U.S. visit our web site for technical assistance or contact, by phone, our local Service Representative. Representative phone numbers and addresses can be found on the Coherent web site, www.Coherent.com.

Coherent provides telephone and web technical assistance as a service to its customers and assumes no liability thereby for any injury or damage that may occur contemporaneous with such services. These support services do not affect, under any circumstances, the terms of any warranty agreement between Coherent and the buyer. Operation of any Coherent laser with any of its interlocks defeated is always at the operator's own risk.
Table of Contents

Preface ... xii
U.S. Export Control Laws Compliance ... xii
Symbols Used in This Manual and on the Laser System ... xiii

Section One: Description and Specifications ... 1-1
System Description ... 1-1
 Chameleon Ultra and Chameleon Vision Laser Heads.. 1-3
 Verdi Laser Head .. 1-3
 PowerTrack .. 1-4
 VPUF Laser Head .. 1-4
 Spectrometer .. 1-5
 Miniature Recirculating Unit (MRU) .. 1-5
 Power Supply ... 1-6
 Servo Loops .. 1-6
 Laser Diode Assembly .. 1-6
 Umbilical Cable .. 1-7
 Installation .. 1-7
Specifications .. 1-7

Section Two: Laser Safety .. 2-1
 Optical Safety .. 2-1
 Safety Features and Compliance to Government Requirements 2-2
 Laser Classification ... 2-3
 Protective Housing ... 2-3
 Laser Radiation Emission Indicators ... 2-3
 Beam Attenuator .. 2-3
 Operating Controls ... 2-3
 Location of Safety Labels ... 2-4
 Electromagnetic Compatibility ... 2-4

Section Three: Installation .. 3-1
 Receiving and Inspection ... 3-1
 External Interlock .. 3-1
 Cooling Water – Laser Head ... 3-3
 MRU Operating Parameters .. 3-3
 Installation Considerations .. 3-7
 Install the Power Supply ... 3-9
 Install the Laser Head ... 3-9
 Umbilical Connection ... 3-9
 Install the MRU X1 .. 3-11
 Install the Chiller .. 3-12
 Turn-On Procedure .. 3-13
Section Four: Daily Operation

Operation .. 4-1
Turning the System On .. 4-1
Cold Start .. 4-1
Warm Start ... 4-2
Turning the System Off .. 4-4
Daily Use .. 4-4
Complete Shut-down .. 4-4
Controls, Indicators and Features ... 4-6
Menu Displays .. 4-10
System Status Messages .. 4-10
Fault Handling ... 4-10

Section Five: External Computer Control

How to Interface the Chameleon Ultra or Chameleon Vision Laser 5-1
RS-232 Command Language .. 5-1
Instruction Syntax for RS-232 Communication .. 5-1
ECHO Mode ... 5-3
PROMPT Mode .. 5-3
?... 5-3
= or : .. 5-3
RS-232 Interface Connection .. 5-4
RS-232 Port Configuration .. 5-4
Setting The Baud Rate ... 5-5
Instruction Set ... 5-6

Section Six: Maintenance and Troubleshooting

Troubleshooting .. 6-1
Checklist 1: Pump Laser Does Not Start, Pump Laser Shuts Down............................. 6-4
Checklist 2: Laser Power Unstable .. 6-5
Checklist 3: “AC ON” Indicator Off .. 6-6
Checklist 4: External Interlock Fault ... 6-6
Checklist 5: PS Cover Interlock Fault ... 6-7
Checklist 6: LBO, Vanadate, Vanadate 2, Etalon, Diode 1 and Diode 2 Temperature
Faults, LBO Not Locked at Set Temperature Fault ... 6-8
Checklist 7: Baseplate Temperature Fault .. 6-8
Checklist 8: Diode Heat Sink Temperature Fault .. 6-9
Checklist 9: Diode Over Current Faults .. 6-10
Checklist 10:
Diode Under Voltage, Diode Over Voltage Faults ... 6-10

Checklist 11:
Diode EEPROM, Laser Head EEPROM, Power Supply EEPROM,
Head-Diode Mismatch, PROM Checksum, PROM Range Faults 6-11

Checklist 12:
LBO Battery Fault ... 6-11

Checklist 13:
Shutter State Mismatch Fault ... 6-12

Checklist 14:
Lost Modelock Fault .. 6-12

Checklist 15:
Ti:Sapphire Temperature Fault .. 6-12

Checklist 16:
Pump and/or Cavity PZT X, PZT Y Faults ... 6-13

Checklist 17:
Cavity Humidity Fault .. 6-13

Checklist 18:
Stepper Motor Homing Error ... 6-14

FAP-I Replacement ... 6-14

Preliminary Steps and Data ... 6-14

FAP-I Handling Precautions .. 6-15

Fiber Cable Handling Precautions ... 6-17

FAP-I Removal .. 6-18

FAP-I Installation ... 6-19

Fiber Optic Cleaning ... 6-21

Necessary Equipment .. 6-21

Fiberscope .. 6-21

Inspect the Fiber ... 6-22

Fiber Cleaning .. 6-23

Fiber Evaluation Criteria ... 6-25

FAP-I Temperature Optimization ... 6-28

Performing the Optimization ... 6-28

Fuse Replacement ... 6-28

Battery Replacement .. 6-29

Cleaning the Air Filter ... 6-30

Section Seven: Theory of Operation ... 7-1

Chameleon Ultra Laser Head .. 7-1

VPUF Laser Head .. 7-1

The Gain Medium .. 7-2

Preparing the Atoms for Amplification — Pumping ... 7-2

Longitudinal Modes ... 7-2

Transverse Mode ... 7-3

Theory of Modelocking .. 7-3

Formation of the Pulse ... 7-4

Active Modelocking ... 7-4
Appendix A: MRU X1

Description and Specifications ... A-1
System Features .. A-2
System Specifications .. A-3
Safety ... A-4
Chemical Safety .. A-4
Operating Controls ... A-4
Location of Safety Labels .. A-4
Electromagnetic Compatibility ... A-5
Installation ... A-6
Receiving and Inspection .. A-6
19" Rack Mounting Brackets ... A-6
External Connections .. A-6
Air Connections .. A-6
Interlock Connections ... A-7
Controls and Indicators ... A-11
Front Panel Indicator .. A-12
Power LED ... A-12
Rear Panel Controls and Indicators .. A-13
Air In & Air Out Ports .. A-13
Interlocks .. A-13
Mains Power Input ... A-14
Maintenance and Troubleshooting ... A-15

Passive Modelocking .. 7-5
Chameleon Ultra and Chameleon Vision Saturable Absorber System ... 7-6
Origin of the Term “Modelocked” .. 7-8
The Starting Mechanism ... 7-10
Transmission of Ultrashort Pulses of Light Through Glass 7-11
Group Velocity Dispersion .. 7-11
Self Phase Modulation .. 7-13
Dispersion Compensation ... 7-14
Changing GVD ... 7-15
The Formation of Final Pulse Width .. 7-16
 Propagation of Ultrashort Pulses Through Optical Materials 7-16
PowerTrack ... 7-17
Autocorrelation .. 7-17
 Optical Schematic Overview ... 7-18
 The Concept Of Autocorrelation ... 7-20
 Background-Free Autocorrelation by Non-Collinear Phase Matching 7-21
 Calibration and Real-time Display .. 7-22
 Time Resolution .. 7-23
 Interpretation Of Autocorrelation Traces .. 7-24
Time-Bandwidth Product ... 7-26
Power Supply ... 7-27
Laser Diode Assembly ... 7-28
Diode/Heat Sink Temperature .. 7-29

Chameleon Ultra and Chameleon Vision Operator’s Manual
Table of Contents

Contacting Coherent Service ... A-15
Maintenance ... A-15
 Interlock Circuit Checkout... A-15
 Desiccant Filter ... A-16
 Inspect/Change Desiccant Filter ... A-16
 4A Molecular Sieve Filter Exchange ... A-17
 HEPA Filter Replacement ... A-18
 Fuse Replacement .. A-18
Drierite MSDS .. A-19
 Material Safety Data Sheet: Drierite .. A-19
 Product and Company Identification .. A-19
 Ingredients ... A-19
 Physical and Chemical Characteristics A-20
 Fire and Explosion Hazard Data ... A-20
 Reactivity Data ... A-20
 Health Hazard Data .. A-21
 Emergency and First Aid Procedures ... A-21
 Spill or Leakage Procedures ... A-22
 Control Measures .. A-22
 References ... A-22
Molecular Sieve 4A MSDS ... A-23
 Material Safety Data Sheet - Molecular Sieve 4A A-23
 Product and Company Identification A-23
 Composition / Information About Ingredients A-24
 Hazard Identification ... A-24
 First Aid Measures .. A-24
 Fire Fighting Measures ... A-25
 Accidental Release Measures .. A-25
 Handling and Storage ... A-25
 Exposure Controls and Personal Protection A-26
 Exposure Limit(s) ... A-26
 Physical and Chemical Properties ... A-27
 Stability and Reactivity .. A-27
 Toxicological Information ... A-28
 Ecological Information .. A-28
 Disposal Information ... A-29
 Transport Information ... A-29
 Regulatory Information .. A-30
 Other Information ... A-30
 Abbreviations .. A-31
 Contact Information ... A-32
 Product Emergencies ... A-32

Appendix B: Packing Procedure ... B-1

Parts List ... C-1
List of Illustrations

1-1. Chameleon Ultra Laser System (Chiller Not Shown) ... 1-1
1-2. Chameleon Vision Laser System (Chiller Not Shown) ... 1-2
1-3. Chameleon (Ultra and Vision) Laser Head.. 1-3

2-1. Safety Features and Labels .. 2-4

3-1. Example External Interlock Circuit .. 3-2
3-2. Chameleon Ultra Laser Component Dimensions .. 3-4
3-3. Chameleon Vision Laser Component Dimensions .. 3-6
3-4. Power Supply .. 3-7
3-5. Chameleon Ultra Laser System (Chiller Not Shown) ... 3-8
3-6. Chameleon Vision Laser System (Chiller Not Shown) ... 3-8
3-7. Umbilical Connections .. 3-10

4-1. Chameleon Ultra Laser Head Features .. 4-6
4-2. Power Supply Controls and Indicators .. 4-8
4-3. Main Menus ... 4-10

5-1. RS-232 Pin Configuration .. 5-4

6-1. Location of FAP-I Assemblies ... 6-15
6-2. Fiber Optic Cap and FAP-I Anode/Cathode Shorting Clip ... 6-16
6-3. FAP-I Fiber Optic Connector ... 6-17
6-4. FAP-I Assembly Interface ... 6-18
6-5. Preparation of the Replacement FAP-I Assembly ... 6-20
6-6. Fiberscope with 20X Eyepiece ... 6-21
6-7. SMA Adapter .. 6-22
6-8. Cleaning the Fiber Nose ... 6-23
6-9. Placement of the Swab on the Fiber Optic Surface ... 6-24
6-10. Fiber Description .. 6-25
6-11. Examples of Fiber Damage ... 6-26

7-1. Chameleon Ultra and Chameleon Vision Saturable Absorber System............................ 7-6
7-2. Intensity of Light with Varying Number of Modes ... 7-9
7-3. Group Velocity Dispersion Derivative .. 7-12
7-4. Group Velocity Dispersion .. 7-13
7-5. One Method of GVD Compensation .. 7-15
7-6. Comparison of Pulse Broadening in Fused Silica, BK7, and SF10 for 100-fs Pulse..... 7-16
7-7. Typical Autocorrelator Optical Schematic Diagram .. 7-19
7-8. Non-collinear Phase Matching ... 7-21

A-1. Coherent MRUX1 .. A-1
A-2. MRU X1 Labels .. A-5
A-3. Example Interlock Circuits ... A-8
A-4. MRU X1 Controls and Indicators A-11
A-5. Air Ports and Laser Interlocks (Back of Unit) A-13
A-6. Mains Input Showing Fuse Access A-14
A-7. MRU X1 Internal Components A-17
B-1. Placement of the Laser Head, Umbilical and Power Supply B-2

LIST OF TABLES

1-1. Chameleon Ultra and Chameleon Vision Specifications 1-7
3-1. Utility Requirements .. 3-3
3-2. Environmental Requirements ... 3-3
3-3. Dimensions and Weights ... 3-4
4-1. Recommended Shutdown Procedures ... 4-4
4-2. Chameleon Ultra Laser Head Features ... 4-7
4-3. Power Supply Controls and Indicators .. 4-9
4-4. Chameleon Ultra or Chameleon Vision Submenus 4-11
4-5. Chameleon Vision Dispersion Submenus 4-13
5-1. Response from Laser after Receiving Instruction 5-2
5-2. RS-232 Port Description ... 5-4
5-3. Chameleon Ultra RS-232 Commands .. 5-6
5-4. Chameleon Ultra RS-232 Query Set ... 5-8
5-5. Chameleon Vision RS-232 Commands 5-14
5-6. Chameleon Vision RS-232 Query Set 5-15
6-1. Troubleshooting/Fault Messages .. 6-1
6-2. Evaluation Criteria .. 6-27
7-1. Time-Bandwidth Products For Typical Model Pulse Shapes 7-25
A-1. MRU X1 System Specifications .. A-3
A-2. CE Regulations Standards ... A-5
A-3. MRU X1 Controls and Indicators .. A-12
A-4. Physical / Chemical Characteristics .. A-20
A-5. Fire and Explosion Hazard Data ... A-20
A-6. Reactivity Data .. A-20
A-7. Health Hazard Data ... A-21
Table of Contents

A-8. Emergency and First Aid Procedures ... A-21
A-10. Control Measures ... A-22
A-12. First Aid Measures ... A-24
A-15. Handling and Storage .. A-25
A-16. Exposure Controls and Personal Protection .. A-26
A-17. International Exposure Limits (mg/m³) .. A-26
A-20. Toxicological Information ... A-28
A-22. Disposal Information ... A-29
A-23. Transport Information .. A-29
A-25. Other Information .. A-30
A-26. Abbreviations .. A-31
A-27. Contact Information ... A-32

B-1. Chameleon Ultra and Chameleon Vision Shipping Crate Contents B-1

C-1. Parts List ... C-1
Preface

This manual contains user information for the Chameleon Ultra™ and Chameleon Vision™ Diode-Pumped, Solid-State, Ultrafast laser systems.

Read this manual carefully before operating the laser for the first time. Special attention should be given to the material in Section Two: Laser Safety, which describes the safety features built into the laser.

Use of controls or adjustments or performance of procedures other than those specified in this manual may result in hazardous radiation exposure.

Use of the system in a manner other than that described herein may impair the protection provided by the system.

U.S. Export Control Laws Compliance

It is the policy of Coherent to comply strictly with U.S. export control laws.

Export and re-export of lasers manufactured by Coherent are subject to U.S. Export Administration Regulations, which are administered by the Commerce Department. In addition, shipments of certain components are regulated by the State Department under the International Traffic in Arms Regulations.

The applicable restrictions vary depending on the specific product involved and its destination. In some cases, U.S. law requires that U.S. Government approval be obtained prior to resale, export or re-export of certain articles. When there is uncertainty about the obligations imposed by U.S. law, clarification should be obtained from Coherent or an appropriate U.S. Government agency.
Symbols Used in This Manual and on the Laser System

This symbol is intended to alert the operator to the presence of dangerous voltage within the product's enclosure that may be of sufficient magnitude to constitute a risk of electric shock and to indicate possible risk of equipment damage.

This symbol is intended to alert the operator to the danger of exposure to hazardous visible laser radiation.

This symbol is intended to emphasize the presence of important operating instructions.

This symbol is intended to alert the operator to the danger of Electro-static discharge (ESD) susceptibility.
SECTION ONE: DESCRIPTION AND SPECIFICATIONS

System Description

The Chameleon Ultra and Chameleon Vision lasers are compact, tunable, Verdi-pumped ultrafast lasers that produce modelocked, femtosecond pulses at an 80 MHz repetition rate.

The Chameleon Ultra (Figure 1-1) and Chameleon Vision (Figure 1-2) consist of a laser head, power supply (connected by an umbilical to the laser head), a miniature recirculating unit (MRU) and a closed loop chiller.

Figure 1-1. Chameleon Ultra Laser System (Chiller Not Shown)
Figure 1-2. Chameleon Vision Laser System (Chiller Not Shown)
The Chameleon Ultra and Chameleon Vision laser heads (refer to Figure 1-3) include a Verdi solid state pump laser, two PowerTrack™ mirrors and the Ultra-Fast (VPUF) laser head. The laser head also contains beam steering mirrors that allow the beam to be positioned precisely.

Verdi Laser Head

The major Verdi optical elements include Neodymium Vanadate (Nd:YVO₄) as the gain medium in a dual-end pumped geometry with the pump power provided by fiber optic delivery.

LBO (Lithium Triborate, LiB₃O₅) is used as the nonlinear wavelength-doubling medium. This is a Type I, non-critically phase matched LBO crystal held at approximately 150°C.

An etalon is used as the single-frequency optic. Since the laser is a unidirectional, homogeneously broadened system, it tends to run naturally single frequency, but the etalon reinforces this behavior.

Unidirectional operation is achieved using an optical diode.

An astigmatic compensator, two pump mirrors and two end mirrors are also included in the optical design. All optical components are mounted on Invar for strength and stability.

For more information about these components, refer to Section Seven: Theory of Operation.
PowerTrack

The PowerTrack function uses two Piezo-driven mirrors to actively maintain optimum pump beam alignment into the VPUF cavity, as well as optimum alignment of the VPUF cavity itself. This minimizes Chameleon Ultra and Chameleon Vision output power fluctuations and drift.

Optimum pump beam (532 nm) alignment is provided by a pump power track (PPT) mirror contained in the VPUF head. The alignment of the PPT mirror is optimized by two PZTs. The PZTs operate in a feedback loop to optimize the alignment of the Verdi pump beam and hence power emitted by the VPUF head.

Optimum cavity alignment is provided by the cavity power track (CPT) mirror, also contained in the VPUF head. The alignment of the CPT mirror is optimized in the same way as for the PPT.

In normal operation, the Chameleon Ultra and Chameleon Vision lasers always operate with either pump or cavity power track active. Both mirrors cannot be active at the same time and while one power track mirror is active, the other is held at a fixed alignment. The Chameleon Ultra and Chameleon Vision have a control protocol that performs appropriate switching between the PPT and CPT.

There is a direct relationship between the laser head baseplate temperature and the PZT positions. The optics in the VPUF head are aligned in the factory with the chiller set at 20°C. If the baseplate temperature varies significantly, the temperature-dependent VPUF head becomes distorted, which causes misalignment of the optics.

The PZTs compensate for small changes in alignment. If the baseplate temperature deviates too much from the original however, the PZTs reach one extreme of their range of motion and are unable to compensate for the misalignment. This results in low Chameleon Ultra and Chameleon Vision power, modelocking difficulty and PZT faults. Refer to Section Five: External Computer Control for further information.

VPUF Laser Head

The VPUF head is an ultrafast laser cavity that uses a Ti:Sapphire crystal as the gain medium. Modelocking is obtained using the Kerr-Lens modelocking (KLM) technique with an automatic starter triggering the initiation of modelocking. The laser cavity is built on an aluminum plate for both mechanical strength and stability and is sealed to minimize environmental contamination. The desired output wavelength is tuned automatically on command.

Accumulated heat in the laser head is dissipated by the water-cooled baseplate. Baseplate temperature is monitored by a CPU in the power supply, which shuts the system down if the laser head temperature becomes too high.
Spectrometer

The laser head has a built-in spectrometer to allow direct readout of laser wavelength. The spectrometer has a resolution of 2 to 3 nm and covers the Chameleon Ultra and Chameleon Vision’s full tuning range. This may be easily interfaced to a customer-supplied computer via a commonly used Universal Serial Bus (USB) electrical connection. The spectrometer manufacturer provides simple software to download data.

Miniature Recirculating Unit (MRU)

The MRU is a separate unit that is connected directly to the laser head using two PTFE hoses. It performs the task of cleaning, conditioning and dehumidifying the air inside the laser head to maintain stability and long-term operation.

It is important that the MRU is always switched on, even when the laser is not being used.

It is important to ensure that the interlock connection between the Chameleon Ultra or Chameleon Vision power supply and the MRU X1 rear panel remains connected to ensure that the laser cannot be run if the MRU X1 is switched off.

See Appendix A: MRU X1 for specific information about the MRU.

The airflow of the unit is factory set to approximately 1.0 L/min. (3 PSI line pressure). The very low flows are designed to minimize noise induction by the recirculator pump. The Teflon tubing that connects the recirculator to the laser head is limited to 6 feet in length. The laser is interlocked to the MRU and cannot run if the unit is off.

The MRU must always be shut off before disconnecting the hoses. The MRU contains a pump that could be damaged due to any increase in pressure caused by a closed valve or blockage.
Power Supply

The main functions of the power supply are to supply DC power for the laser diode system that pumps the gain medium in the Verdi laser head, control the servo loops, provide cooling for the laser diode assemblies, control and monitoring, data storage and a user interface.

Servo Loops

The CPU-controlled servo loops are briefly described below. Additional information is located in Section Seven: Theory of Operation.

- **Verdi light loop.** A photodiode in the Verdi head monitors the Verdi laser power via the CPU. The CPU controls the output power from the Verdi based on this photodiode and in conjunction with the requested power from the power supply front panel.

- **LBO temperature.** The LBO doubling crystal is held at approximately 150°C by a resistive heater. To prevent rapid change of temperature that may cause LBO crystal damage during warm-up, the CPU regulates a slow ramp-up to operating temperature. This typically lasts between 30 to 45 minutes.

 In case of loss of AC power due to a power failure or inadvertently turning off the rear panel power switch, the laser is equipped with a battery-powered, microprocessor-controlled cool-down feature. This feature lowers the LBO temperature gradually to room temperature.

- **Pump diode heat sink temperature.** Diode heat sink temperature is held constant by thermo-electric coolers (TECs). Excess heat is dissipated by forced air-cooling through heat sinks. The diode heat sinks are located within the power supply.

- **Vanadate, Titanium:sapphire (Ti:Sapphire) and Etalon temperatures.** These optical components are maintained at a preset level by TECs, which are capable of heating or cooling the optical element.

- **PowerTrack.** Refer to the section titled “PowerTrack” on page 1-4.

Laser Diode Assembly

Two identical laser diode assemblies (Fiber Array Package, Integrated, or FAP-I™) are located in the power supply. The temperature of and current to each assembly is controlled individually and monitored by the CPU. Each FAP-I houses a diode bar and a TEC.
Description and Specifications

Umbilical Cable

The umbilical contains fiber optic cables to transmit light from the diode bars in the power supply to the laser head and also houses electrical cables that provide control and monitoring signals between the laser head and power supply.

Installation

For instructions on connecting and installing the Chameleon Ultra or Chameleon Vision laser head and power supply refer to Section Three: Installation.

Specifications

Specifications for the Chameleon Ultra and Chameleon Vision lasers are listed in Table 1-1.

Table 1-1. Chameleon Ultra and Chameleon Vision Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Ultra</th>
<th>Ultra I</th>
<th>Ultra II</th>
<th>Vision I</th>
<th>Vision II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Power</td>
<td></td>
<td>> 2.5 W</td>
<td>> 2.9 W</td>
<td>> 3.5 W</td>
<td>> 2.5 W</td>
<td>> 3.0 W</td>
</tr>
<tr>
<td>Pulse Width[2]</td>
<td></td>
<td></td>
<td></td>
<td>140 fs at peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetition Rate</td>
<td></td>
<td></td>
<td></td>
<td>80 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuning Range[3]</td>
<td></td>
<td>690 to 1020 nm</td>
<td>690 to 1040 nm</td>
<td>680 to 1080 nm</td>
<td>690 to 1040 nm</td>
<td>680 to 1080 nm</td>
</tr>
<tr>
<td>Power Stability[4]</td>
<td></td>
<td></td>
<td></td>
<td>< ±0.5 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise[5]</td>
<td></td>
<td></td>
<td></td>
<td>< 0.15 % rms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M² (Beam Quality)</td>
<td></td>
<td></td>
<td></td>
<td>< 1.1 (TEM₀₀)</td>
<td></td>
<td>< 1.1 (TEM₀₀)</td>
</tr>
</tbody>
</table>

All specifications are subject to change without notice.

[1] All Chameleon specifications apply at peak of tuning curve unless otherwise stated.
[4] Power drift specified in any two-hour period with less than ± 1°C temperature change after one-hour warm-up.
Because of its special properties, laser light poses safety hazards not associated with light from conventional sources. The safe use of lasers requires that all laser users – and everyone else near the laser system – are aware of the dangers involved. The safe use of the laser depends upon the user becoming familiar with the instrument and the properties of intense and coherent beams of light.

Direct eye contact with the output beam from the laser causes serious damage and possible blindness.

Laser beams can ignite volatile substances such as alcohol, gasoline, ether and other solvents and can damage light-sensitive elements in video cameras, photomultipliers and photodiodes. Reflected beams may also cause damage. For these reasons, the user is advised to adhere to the following precautions:

1. Observe all safety precautions in the operator’s manual.
2. Exercise extreme caution when using solvents in the area of the laser.
3. Limit access to the laser to qualified users who are familiar with laser safety practices and who are aware of the dangers involved.
4. Never look directly into the laser light source or at scattered laser light from any reflective surface. Never sight down the beam into the source.
5. Maintain experimental setups at low heights to prevent inadvertent beam-eye encounter at eye level.

Laser safety glasses can present a hazard as well as a benefit while they protect the eye from potentially damaging exposure; they block light at the laser wavelengths that prevents the operator from seeing the beam. Therefore, use extreme caution even when using safety glasses.
6. As a precaution against accidental exposure to the output beam or its reflection, those using the system should wear laser safety glasses as required by the wavelength being generated.

7. Avoid direct exposure to the laser light. The intensity of the beam can easily cause flesh burns or ignite clothing.

8. Use the laser in an enclosed room. Laser light remains collimated over long distances and therefore presents a potential hazard if not confined.

9. Post warning signs in the area of the laser beam to alert those present.

10. Advise all those using the laser of these precautions. It is good practice to operate the laser in a room with controlled and restricted access.

Laser safety glasses can present a hazard as well as a benefit; while they protect the eye from potentially damaging exposure, they block light at the laser wavelengths, which prevents the operator from seeing the beam. Therefore, use extreme caution even when using safety glasses.

Safety Features and Compliance to Government Requirements

The following features are incorporated into the instrument to conform to several government requirements. The applicable United States Government requirements are contained in 21 CFR, subchapter J, part II administered by the Center for Devices and Radiological Health (CDRH). The European Community requirements for product safety are specified in the Low Voltage Directive (LVD) (published in 73/23/EEC and amended in 93/68/EEC). The Low Voltage Directive requires that lasers comply with the standard EN 61010-1 “Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use” and EN 60825-1 “Radiation Safety of Laser Products”. Compliance of this laser with the (LVD) requirements is certified by the CE mark.
Laser Classification

The governmental standards and requirements specify that the laser must be classified according to the output power or energy and the laser wavelength. The Chameleon Ultra and Chameleon Vision are classified as Class IV based on 21 CFR, subchapter J, part II, section 1040-10 (d). According to the European Community standards, Chameleon Ultra and Chameleon Vision lasers are classified as Class 4 based on EN 60825-1, clause 9. In this manual, the classification is referred to as Class 4.

Protective Housing

The laser head is enclosed in a protective housing that prevents human access to radiation in excess of the limits of Class I radiation as specified in the Federal Register, July 31, 1975, Part II, Section 1040.10 (f) (1) and Table 1-A/EN 60825-1, clause 4.2 except for the output beam, which is Class IV.

Laser Radiation Emission Indicators

The appropriately labeled lights on both the power supply and the laser head illuminate approximately 30 seconds before laser emission can occur. Amber lights are used so that they are visible when the proper type of safety glasses are used [CFR 1040.10(f)(5)/EN 60825-1, clause 4.6].

Beam Attenuator

A beam attenuator, or shutter, prevents contact with laser radiation without the need to switch off the laser [CFR 1040.10 (f)(6)/EN 60825-1, clause 4.7].

Operating Controls

The laser controls are positioned so that the operator is not exposed to laser emission while manipulating the controls [CFR 1040.10(f)(7)/EN 60825-1, clause 4.8].

Use of controls or adjustments or performance of procedures other than those specified in this manual may result in hazardous radiation exposure.

Use of the system in a manner other than that described within this manual may impair the protection provided by the system.
Location of Safety Labels

Refer to Figure 2-1 for a description and location of all safety labels. These include warning labels indicating removable or displaceable protective housings, apertures through which laser radiation is emitted and labels of certification and identification [CFR 1040.10(g), CFR 1040.2 and CFR 1010.3/EN 60825-1, Clause 5].

Electromagnetic Compatibility

The European requirements for Electromagnetic Compliance (EMC) are specified in the EMC Directive (published in 89/336/EEC).

Conformance (EMC) is achieved through compliance with the harmonized standards EN 55011 and/or EN 55022 (1998) for emission and 6100-6-1:2001 for immunity.

The laser meets the emission requirements for Class B, group 1 as specified in EN 55011 (1991).

Compliance of this laser with the (EMC) requirements is certified by the CE mark.

CHAMELEON ULTRA LASER HEAD

Figure 2-1. Safety Features and Labels (Sheet 1 of 5)
CHAMELEON VISION LASER HEAD

POWER SUPPLY

Figure 2-1. Safety Features and Labels (Sheet 2 of 5)
1. Exposure Warning Label

2. Laser Warning

3. Laser Aperture Indicator

4. CDRH-Required Safety Information

Figure 2-1. Safety Features and Labels (Sheet 3 of 5)
5. Serial Number and Information

6. Caution Label

7. CE Certification

8. Caution Mark

9. Power Supply Model/Serial Number

Figure 2-1. Safety Features and Labels (Sheet 4 of 5)
10. Radiation Label

11. Voltage Label

Figure 2-1. Safety Features and Labels (Sheet 5 of 5)
SECTION THREE: INSTALLATION

Inspect shipping containers for signs of rough handling or damage. Indicate any such signs on the bill of lading. Report any damage immediately to the shipping carrier and to Coherent Service Department (800-367-7890) or to an authorized representative.

Retain shipping containers. The containers are required if the system is returned to the factory for service. The containers may also be needed to support a shipping damage claim.

Chameleon Ultra and Chameleon Vision lasers consist of four major components: the laser head, the power supply, the chiller and MRU air recirculator. The laser head and power supply are connected by the umbilical. Coherent recommends that two people unpack and transport the Chameleon Ultra and Chameleon lasers. Each of these components should be lifted by at least two people.

An interlock connector is located on the power supply rear panel. During operation, the interlock status is continually monitored by the CPU. If the interlock is open, an interlock fault message is displayed on the power supply front panel and laser emission is terminated. Laser emission does not resume until the interlock circuit is closed and the interlock fault is manually cleared.

Since the laser system should never be operated without purified air from the MRU, the MRU X1 is positioned in the middle of the interlock loop effectively moving the interlock connector to the MRU X1 rear panel. This external interlock must be closed (by jumper or switch contacts) and the MRU pump must operate before the interlock loop circuit is satisfied.

The laser system includes the interlock cable that connects the power supply to the MRU X1, an interlock over-ride (defeat) jumper (a shorted HR10 plug), and an un-wired HR10 plug to be used in a customer-designed interlock circuit.

Local safety regulations and customer application will dictate which interlock method to employ. A basic interlock circuit using a control or door switch is provided in Appendix A. A more advanced interlock circuit, complete with a “Laser In Use” warning light is shown...
below in Figure 3-1. Note that the interlock circuit provides insufficient power to drive a load, therefore do not place any load on the external interlock circuit.

The interlock connection on the power supply rear panel must be connected to the MRU X1 using the mini-DIN cable provided. The user-furnished external interlock is then connected to the HR10 connector on the MRU X1 (see Appendix A: MRU X1). This interlock method prevents the laser from operating if the MRU is not running or the external interlock circuit is opened.

![Figure 3-1. Example External Interlock Circuit](image)

Any external interlock circuit should be equivalent to a mechanical closure of the circuit. Under no circumstances should an external voltage or current source be connected to this circuit. External interlock circuitry must be isolated from all other electrical circuits or grounds.
Cooling Water – Laser Head

The Chameleon Ultra and Chameleon Vision Ti:Sapphire crystal requires a flow of cooling water for proper operation. A chiller must be used at all times.

MRU Operating Parameters

The airflow from the MRU air recirculator is factory set to approximately 1.0 L/minute (3 psi line pressure). The very low flows are designed to minimize noise induction by the recirculator pump.

Table 3-1. Utility Requirements

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>REQUIREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Requirements</td>
<td>90 to 250 VAC[^1][^2]</td>
</tr>
<tr>
<td>Maximum Current</td>
<td>Max. 15.5 Amp @ 85 VAC</td>
</tr>
<tr>
<td>Line Frequency</td>
<td>47 to 63 Hz</td>
</tr>
<tr>
<td>Cooling</td>
<td>Power supply: Air cooled with ambient air</td>
</tr>
<tr>
<td></td>
<td>Laser head: Water-cooled.</td>
</tr>
</tbody>
</table>

Note: All specifications and requirements are subject to change without notice.
[^1]: The power supply is autoranging and accommodates the full range of input voltages without hardware changes.
[^2]: The electrical service should have a main power disconnect switch located in close proximity to the laser. The main power disconnect switch must be marked clearly as the disconnecting device for the laser and must be within easy reach of the operator.

Table 3-2. Environmental Requirements

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>REQUIREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>15 to 35°C (59°F to 95°F)</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>5 to 95%</td>
</tr>
<tr>
<td>Altitude</td>
<td>Sea level to 10,000 feet</td>
</tr>
</tbody>
</table>
Table 3-3. Dimensions and Weights

<table>
<thead>
<tr>
<th></th>
<th>POWER SUPPLY</th>
<th>ULTRA LASER HEAD</th>
<th>VISION LASER HEAD</th>
<th>UMBILICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>618.0 mm (24.33 in)</td>
<td>610.4 mm (24.03 in)</td>
<td>779.5 mm (30.69 in)</td>
<td>3 m (9.84 feet)</td>
</tr>
<tr>
<td>Width</td>
<td>436.0 mm (17.17 in)</td>
<td>369.0 mm (14.53 in)</td>
<td>369.0 mm (14.53 in)</td>
<td>—</td>
</tr>
<tr>
<td>Height</td>
<td>269.0 mm (10.59 in)</td>
<td>189.2 mm (7.45 in)</td>
<td>189.2 mm (7.45 in)</td>
<td>—</td>
</tr>
<tr>
<td>Weight</td>
<td>41 kg (90 lbs)</td>
<td>42 kg (93 lbs)</td>
<td>52 kg (115 lbs)</td>
<td>1.8 kg (4 lbs)</td>
</tr>
<tr>
<td>Diameter</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>38 mm (1.5 in)</td>
</tr>
</tbody>
</table>

Dimensions shown are millimeters (with inches in parentheses).

Figure 3-2. Chameleon Ultra Laser Component Dimensions
Dimensions shown are millimeters (with inches in parentheses).

Figure 3-2. Chameleon Ultra Laser Component Dimensions (Continued)
Figure 3-3. Chameleon Vision Laser Component Dimensions
Installation Considerations

The Chameleon Ultra and Chameleon Vision laser systems are shipped with the optical fibers connected to both power supply and laser head ends. Position the power supply with the fiber umbilical as straight as possible. Ensure the umbilical is not twisted or kinked. Great care should be taken not to subject the fibers to mechanical stress, e.g. bend radius of less than 150 mm (6 inches), pulling at either end connector.

The recommended distance between the Chameleon Ultra or Vision laser head output and any optical system following is 160 - 610 mm (6 - 24 inches).

Locate the laser head, power supply, chiller and MRU recirculator (see Figure 3-5 or Figure 3-6) in a convenient location, preferably away from heat-producing sources. If the power supply overheats, the system shuts down automatically without damage to system components. Ensure the power supply-cooling intake and exhaust (rear, top and left side) are not blocked or obstructed.

Make sure to provide user access to all system controls, and service access to all lasers system components, covers and connections.

Refer to “Controls, Indicators and Features” on page 4-6 for the location of all connectors referenced in the following procedure.
Figure 3-5. Chameleon Ultra Laser System (Chiller Not Shown)

Figure 3-6. Chameleon Vision Laser System (Chiller Not Shown)
Install the Power Supply

1. Move the power supply to an accessible-friendly location, preferably away from heat producing sources. Ensure the cooling intake and exhaust (front and back) are not blocked or obstructed. If storing the power supply in a 19 in. (48 cm) equipment rack, allow a minimum clearance of 18 in. (46 cm) for the front panel of the power supply.

2. On the power input module, verify that the two AC fuses are appropriate for the local AC supply voltage (use 15A fuses for 100 V AC mains or 10A fuses for 220 V AC mains). On new or repaired systems, there is a fuse selection warning label that need to be removed before the AC power cord can be connected.

3. Inspect the plug end of the power cord and install the proper mating connector, if necessary. Each locality should inspect the power cord and install the proper connector if necessary. The connector should be installed in a properly grounded outlet with a maximum of 16 Amp service for proper overcurrent and earth fault protection.

Install the Laser Head

1. Place the laser head on an optical table or other stable platform. Position the laser head such that the output aperture is 150 - 610 mm (6 to 24 inches) away from the next optical system.

2. Secure the laser head to the table with the supplied mounting feet.

3. If desired, connect a user-supplied USB cable between the spectrometer connector on the laser head and a computer system.

 Install the spectrometer software as outlined in the installation disk. It is important that the spectrometer is used only with the software that was shipped with it. The software is specific to that spectrometer only.

Umbilical Connection

1. Attach the four umbilical cables to the rear panel of the power supply. Each cable has a different size connector, so it is straightforward to make the correct connections. Refer to Figure 3-7.

2. Attach the umbilical ground braid to the rear panel of the power supply.
3. Unscrew and remove the U-shaped clamp from the umbilical strain relief bracket. Secure the umbilical cable between the bracket and clamp and tighten the clamp screws.

4. Feed the AC power cord through the feed-through in the umbilical strain relief bracket and plug into the rear panel of the power supply. Do not connect to AC power at this time.

Figure 3-7. Umbilical Connections
Position the MRU X1 in an accessible location within 4 m (13 feet) of the power supply (length of the interlock cable) and 1.8 m (4 feet) of the laser head (air hose length). It is normal to set the MRU X1 on top of the power supply. If installing the power supply in a 19 inch equipment rack, allow a minimum vertical clearance of 456 mm (18 inches) above the top panel of the MRU X1.

1. Locate the interlock cable (mini-DIN connectors on both ends), the HR10 interlock over-ride (defeat) plug and the un-wired HR10 plug.

2. Connect one end of the mini-DIN interlock cable to the EXT Interlock jack on the power supply. Connect the other end of the cable to the PSU Interlock jack on the MRU X1.

3. Connect the interlock over-ride plug (or HR10 plug wired to the customer-supplied interlock circuit) to the EXT Interlock jack on the MRU X1.

4. Remove the protective caps from the inlet and outlet ports at the back of the laser head and from the front of the MRU.

5. Remove the clean air hose from the clean packaging. Protect from contact contamination (including protection from dirt and grease on hands) during fitting.

6. Fit the outlet port from the recirculator to the inlet port of the laser head, then fit the outlet port from the laser head to the inlet port of the recirculator.

7. Connect the MRU to facility power and turn the recirculator on. The green LED should illuminate on the front panel of the MRU and a quiet humming sound should be audible, indicating that the pump is operating normally.

8. Allow the MRU to run for a minimum of two hours before proceeding.
The recirculator must be run for a minimum of two hours before operating the system.

Install the Chiller

The water chiller is shipped completely drained of water and must be filled before use. Fill the reservoir with a pre-mixed solution of 10% Optishield Corrosion Inhibitor (included) and 90% steam-distilled water by volume. Connect the chiller to the laser head with the supplied hoses. Be sure the set temperature is set to 20°C. Follow the operator’s manual included with the chiller for specific instructions.

1. In a separate vessel, make 1 liter of premix coolant: Add 1 part Optishield to 9 parts distilled water. Mix well.

Use a solution of 90% steam-distilled water and 10% Optishield Plus Corrosion Inhibitor to fill the reservoir. Do not use de-ionized water. De-ionized water can contain dissolved solids that may damage the laser head.

2. Connect the water lines that run between the chiller and the laser head. Take care to note the flow direction. Ensure that the output of the chiller is connected to the input of the laser head, and vice versa.

3. Fill the chiller reservoir (fill tank) with the premix coolant.

4. Locate the power cord and connect it to the chiller. If necessary, install a proper mating plug on the mains end. The plug must be installed in a properly grounded outlet with a maximum of 15 Amp service for proper overcurrent and earth fault protection.

5. Turn the chiller on and allow the coolant to fill the water lines and laser head. Refill the chiller reservoir as required.

Do not overfill the chiller reservoir. Ensure sure that water is not spilled externally around the filler cap. Immediately wipe up any spilled water with absorbent tissues.
6. Verify the chiller temperature is set to 20°C. Follow the operator’s manual included with the chiller for specific instructions.

7. Check the system for leaks.

Turn-On Procedure

Perform the cold start procedure located in Section Four: Daily Operation.
SECTION FOUR: DAILY OPERATION

Operation

Wear laser safety glasses to protect against the radiation generated from the laser. It is assumed that the operator has read Section Two: Laser Safety and is familiar with laser safety practices and the dangers involved. Ensure all personnel in the area wear laser safety glasses.

The Chameleon Ultra and Chameleon Vision lasers are designed to be operated with the head cover in place. Do not open the laser head. There are no user-serviceable components or adjustments inside. The warranty is voided if the enclosure is disassembled.

Turning the System On

Cold Start

The cold-start procedure must be used when the Chameleon Ultra or Chameleon Vision power supply rear panel power switch has been off for more than 60 minutes. In this condition, all servos are off and the pump laser has to stabilize the servos that can take up to 60 minutes. During this time, the laser diodes cannot be turned on.

The cold-start procedure can be performed when the laser is externally controlled using a computer. For a list of RS-232 commands and queries, refer to Table 5-3 on page 5-6 and Table 5-4 on page 5-8.

Ensure the keyswitch is in the STANDBY position prior to performing the following step. Turning the keyswitch on results in a fault display until the pump laser LBO reaches the proper temperature.
1. Ensure that the chiller is switched on and the temperature is set to 20°C.

2. Set the power switch on the power supply rear panel to the ON position. The AC power and laser emission indicators on the front panel of the power supply light. (If either of these indicators does not light, refer to Section Six: Maintenance and Troubleshooting.)

3. The main menu appears on the power supply front panel. Initially, the status indicator displays “Laser warming up”. This indicates that the LBO crystal in the pump laser is being heated to the required operating temperature, which takes approximately 45 minutes to complete; the percentage value in the status display provides a progress indicator.

4. When the LBO temperature is locked at its operating temperature the status display on the front panel changes to “stand by”.

5. Turn the keyswitch on the power supply front panel to ON.

6. The display status will then read, “power ramping (xx%)” as the laser diodes ramp to their operating power. This takes a few minutes to complete; progress update is displayed as a percentage value in the status display.

7. Once the diodes have reached their operating power the status display changes to “starting” for a few seconds and then to “OK”, indicating that modelocked laser output is available from the laser head at the wavelength and power indicated on the front panel.

8. To tune the laser set the desired wavelength using the POWER ADJUST or rotary knob and press Select.

9. Monitor the baseplate temperature periodically; typically this is less than 35°C.

Warm Start

A warm start can be performed when the Chameleon Ultra or Chameleon Vision power supply rear panel power switch has been on for more than 60 minutes. The recommended daily operation of the Chameleon Ultra or Chameleon Vision lasers is to use this warm-start turn-on procedure in conjunction with the turn-off procedure that leaves the rear panel power switch in the ON state.

If the pump laser power supply has been off for longer than 60 minutes (AC ON indicator not lit), refer to the procedure titled “Cold Start”.
The warm-start procedure can be performed when the laser is externally controlled using a computer. For a list of RS-232 commands and queries, refer to Table 5-3 on page 5-6 and Table 5-4 on page 5-8.

1. Ensure that the baseplate chiller is turned on. The chiller temperature should be set to 20°C.

2. The LASER EMISSION and AC Power indicators should be on. (If either of these indicators does not light, refer to Section Six: Maintenance and Troubleshooting.)

3. The main menu appears on the power supply front panel display. Refer to Figure 4-3 and Table 4-4 on page 4-11 for a complete description of the display menus.

Ensure the laser output is blocked or is directed at an intended target. Ensure all personnel in the area are wearing laser safety glasses before proceeding to the next step.

4. Turn the keyswitch on the power supply front panel to the ON position.

5. The display status will then read, “power ramping (xx%)” as the laser diodes ramp to their operating power. This takes a few minutes to complete; progress update is displayed as a percentage value in the status display.)

6. Once the diodes have reached their operating power, the status display changes to “starting” for a few seconds and then to “OK”, indicating that modelocked laser output is available from the laser head at the wavelength and power indicated on the front panel.

7. To tune the laser, set the desired wavelength using the POWER ADJUST or rotary knob and press select.

8. Monitor the baseplate temperature periodically; typically this is less than 35°C.
Turning the System Off

Daily Use

When Chameleon Ultra lasers are used on a daily basis, turn-off normally consists of turning the keyswitch to the STANDBY position. This shuts the current to the laser diodes off and places the pump laser in standby. When the Chameleon Ultra or Chameleon Vision is in standby mode, the baseplate chiller should be left on, as should the MRU recirculator.

The “Daily Use” turn-off method avoids the heater ramp-up cycle described in the paragraph titled “Cold Start” on page 4-1.

Do not turn the power switch on the power supply rear panel off. Refer to the paragraph titled “Complete Shut-down” on page 4-4 if all power is to be removed from the system.

Table 4-1. Recommended Shutdown Procedures

<table>
<thead>
<tr>
<th>EXPECTED DOWNTIME</th>
<th>PSU</th>
<th>MRU</th>
<th>CHILLER</th>
<th>LASER HEAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 days</td>
<td>STANDBY</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>2 days to 1 week</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>> 1 week</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF + DRAINED</td>
<td>OFF + DRAINED</td>
</tr>
</tbody>
</table>

The laser can be turned off when the laser is externally controlled using a computer. For a list of RS-232 commands and queries, refer to Table 5-3 on page 5-6 and Table 5-4 on page 5-8.

Complete Shut-down

This procedure removes all power from the system and is recommended for performing system maintenance or if no operation is anticipated for a long period of time. Use the cold-start procedure to turn the Chameleon Ultra or Chameleon Vision on after a complete shut-down.
The Chameleon Ultra and Chameleon Vision can be shut down completely when the laser is controlled externally using a computer. For a list of RS-232 commands and queries, refer to Table 5-3 on page 5-6 and Table 5-4 on page 5-8.

1. Turn the keyswitch power supply front panel to the STANDBY position.

2. Access and select the main menu and scroll down to the System Shutdown menu and press the MENU SELECT pushbutton.

To avoid unnecessary use of the backup battery, do not turn the power switch on the power supply rear panel off while the pump laser is in the cool-down cycle. The cool-down cycle takes approximately 45 minutes.

Do not turn the power switch on the rear of the power supply off or disconnect AC power from the power supply if a “LBO Battery” fault is active. Refer to Section Six: Maintenance and Troubleshooting for additional information.

3. In the System shutdown menu press MENU SELECT to continue or EXIT to abort.

4. The front panel then displays the status “system cooling down (xx%)”. This takes approximately 45 minutes to complete; progress update is displayed as a percentage value. The shut-down can be aborted at any time by accessing the “system warm up” menu from the main menu.

To prevent system degradation due to water contamination, the MRU recirculator should be left on and connected to the Chameleon Ultra or Chameleon Vision laser head. Refer to Table 4-1 for guidance.

Turning the power switch off or removing AC power from the power supply causes the internal battery to be used rather than AC power to complete the LBO cool-down cycle. This causes unnecessary drain on the battery. To extend battery life, use the LBO cool-down cycle from the menu. For additional information, refer to Section Seven: Theory of Operation.
Controls, Indicators and Features

Figure 4-1. Chameleon Ultra Laser Head Features

1. Emission indicator
2. Exit window
3. Fast photo diode (sync out) BNC connector
4. MRU connectors
5. Umbilical (optical fibers)
6. Cooling water inlet and outlet fittings
7. Internal spectrometer USB connector
Table 4-2. Chameleon Ultra Laser Head Features

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CONTROL</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Emission indicator</td>
<td>Lights when laser emission is possible.</td>
</tr>
<tr>
<td>2</td>
<td>Exit window</td>
<td>Emits ultrafast laser light from this window when the laser is on and the shutter is open.</td>
</tr>
<tr>
<td>3</td>
<td>Fast photo diode (sync out) BNC connector</td>
<td>Synchronizes external equipment with the Chameleon Ultra or Chameleon Vision output pulse. This output can also be used to monitor the output pulse with an oscilloscope.</td>
</tr>
<tr>
<td>4</td>
<td>MRU connectors</td>
<td>Connects the MRU to the Chameleon Ultra or Chameleon Vision laser head. The recirculator should be left on at all times.</td>
</tr>
<tr>
<td>5</td>
<td>Umbilical</td>
<td>Houses the fiber optic and electrical cables that provide an interface between the laser head and power supply.</td>
</tr>
<tr>
<td>6</td>
<td>Cooling water inlet and outlet fittings</td>
<td>Connects to facility water or a closed-loop chiller.</td>
</tr>
<tr>
<td>7</td>
<td>Internal spectrometer USB connector</td>
<td>Allows the user to connect an external computer (supplied by user) to the Chameleon Ultra or Chameleon Vision internal spectrometer and monitor the system wavelength.</td>
</tr>
</tbody>
</table>
1. AC ON indicator
2. keyswitch
3. LASER EMISSION indicator
4. Display
5. MENU UP/DOWN pushbuttons
6. MENU SELECT pushbutton
7. MENU EXIT pushbutton
8. SHUTTER OPEN pushbutton indicator
9. DISPLAY CONTRAST adjust
10. POWER LEVEL 1/2 pushbutton indicators
11. POWER ADJUST or rotary knob
12. Air filter retaining screws (2x)
13. Fuses
14. Power cord receptacle
15. Power ON/OFF switch
16. Umbilical
17. MODEM connector, not used
18. EXTERNAL INTERLOCK connector
19. SERIAL PORT connector

Figure 4-2. Power Supply Controls and Indicators
Table 4-3. Power Supply Controls and Indicators

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CONTROL</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AC ON indicator</td>
<td>Lights when power is applied to the power supply via the power switch on the power supply rear panel.</td>
</tr>
<tr>
<td>2</td>
<td>Keyswitch</td>
<td>Toggles the Chameleon Ultra or Chameleon Vision lasers either in the STANDBY or ON state. The key can be removed when in STANDBY position to prevent unauthorized operation. The key cannot be removed when in ON position.</td>
</tr>
<tr>
<td>3</td>
<td>LASER EMISSION indicator</td>
<td>Lights when laser emission is possible.</td>
</tr>
<tr>
<td>4</td>
<td>Display</td>
<td>Displays pump laser status, operating parameters and diagnostic data. Refer to Table 4-4 for a complete description of the Chameleon Ultra displays.</td>
</tr>
<tr>
<td>5</td>
<td>MENU UP/DOWN pushbuttons</td>
<td>Allows scrolling through the menus. Refer to Table 4-4 for a complete description of the Chameleon Ultra or Chameleon Vision displays and menus.</td>
</tr>
<tr>
<td>6</td>
<td>MENU SELECT pushbutton</td>
<td>Allows selection of the indicated menu.</td>
</tr>
<tr>
<td>7</td>
<td>MENU EXIT pushbutton</td>
<td>Exits current menu. Can also be used to clear inactive faults as described in the troubleshooting charts in Section Six: Maintenance and Troubleshooting. Pressing MENU EXIT while in the main menu causes the single-frequency mode to recenter as described in Table 5-3, “FLASH” command.</td>
</tr>
<tr>
<td>8</td>
<td>SHUTTER OPEN pushbutton indicator</td>
<td>Opens and closes the shutter on the laser head remotely. The pushbutton indicator LED lights when the shutter is disabled.</td>
</tr>
<tr>
<td>9</td>
<td>DISPLAY CONTRAST adjust</td>
<td>Allows adjustment of the display by user for best viewing.</td>
</tr>
<tr>
<td>10</td>
<td>POWER LEVEL 1/2 pushbutton indicators</td>
<td>Not functional on Chameleon Ultra or Chameleon Vision.</td>
</tr>
<tr>
<td>11</td>
<td>POWER ADJUST or rotary knob</td>
<td>Allows continuous adjustment of various settings including the wavelength.</td>
</tr>
<tr>
<td>12</td>
<td>Air filter retaining nuts</td>
<td>Secures air filter cover to power supply.</td>
</tr>
<tr>
<td>13</td>
<td>Fuse</td>
<td>250 V, 10 A, time-delay fuse provides electrical protection.</td>
</tr>
<tr>
<td>14</td>
<td>Power cord receptacle</td>
<td>Connects the power supply to 110 VAC facility power, using supplied cord.</td>
</tr>
<tr>
<td>15</td>
<td>Power ON/OFF switch</td>
<td>Applies/removes all power from the pump laser. Refer to the shut-down procedures to avoid unnecessary use of the internal battery.</td>
</tr>
<tr>
<td>16</td>
<td>Umbilical</td>
<td>Houses electrical cables and the fiber optic cables.</td>
</tr>
<tr>
<td>17</td>
<td>MODEM connector</td>
<td>Not used.</td>
</tr>
<tr>
<td>18</td>
<td>EXTERNAL INTER-LOCK connector</td>
<td>Allows connection of an external interlock. The pump laser does not operate when this connector is open. Refer to the Section Three: Installation, for additional information on the interlock.</td>
</tr>
<tr>
<td>19</td>
<td>SERIAL PORT connector</td>
<td>Allows external computer control of the Chameleon Ultra or Chameleon Vision. Refer to Section Five: External Computer Control for additional information on external computer control, including commands, queries, and system requirements.</td>
</tr>
</tbody>
</table>
Menu Displays

Figure 4-3 shows the Chameleon Ultra and Chameleon Vision Main Display and the Base Menu screens. The wavelength-tuning menu can be reached from the Main Menu by pressing EXIT on the power supply front panel. Once in the wavelength-tuning menu, the user can return to the main menu by pressing the power supply SELECT button.

Navigation through a list of submenus, such as those in the Base Menu screen, is achieved by pressing the UP and DOWN arrow keys on the power supply front cover. When the selection arrow (see Figure 4-3) points to the desired submenu, that item can be activated by pressing the SELECT pushbutton. Pressing the EXIT pushbutton deactivates the submenu and re-displays the wavelength tuning menu screen. Examples and explanations for all Chameleon Ultra and Chameleon Vision submenus can be found in Table 4-4.

System Status Messages

The current status of the laser system is displayed in the wavelength tuning menu. Possible status messages are listed in Table 4-4, “Chameleon Ultra or Chameleon Vision Submenus,” on page 4-11.

Fault Handling

In case of a fault, the CPU closes the shutter, sets the laser diode current to zero and displays the Fault Status Screen. For example:

![Fault Status Screen](image-url)
To clear a fault, the appropriate troubleshooting steps should be taken. The power supply keyswitch should be turned to the STANDBY position and the EXIT pushbutton pressed. See Table 6-1, “Troubleshooting/Fault Messages,” on page 6-1 for a complete listing of system faults and troubleshooting procedures.

When the condition that caused the fault no longer exists, exit the Fault Status screen to clear the fault. Once the keyswitch is turned to the ON position, laser operation returns to its pre-fault state, except the shutter remains closed.

If the fault condition still exists, the system message “FAULT ACTIVE” is displayed in the Main Display screen.

Table 4-4. Chameleon Ultra or Chameleon Vision Submenus (Sheet 1 of 3)

<table>
<thead>
<tr>
<th>Power: 1900mW</th>
</tr>
</thead>
<tbody>
<tr>
<td>800nm</td>
</tr>
<tr>
<td>Status: OK</td>
</tr>
</tbody>
</table>

The user must access this menu to adjust the Chameleon Ultra or Chameleon Vision output wavelength. Select the desired wavelength using the front panel power knob and press Menu select.

The screen displays the actual modelocked power available from the Chameleon Ultra laser head and the current operating status of the laser as follows:

- **OK**: Normal operation, modelocked laser output available at displayed power and wavelength
- **Standby**: Keyswitch OFF
- **Power ramping (0.9%)**: Diodes ramping to operating power, progress displayed as a percentage
- **Starting**: System at operating power and staring modelock
- **Tuning**: Tuning operation in progress
- **Cooling down (xx%)**: System cooling down during total shutdown, progress displayed as a percentage
- **Warming up (xx%)**: System warming up during cold start, progress displayed as a percentage

The system diagnostics menu permits access to the following system diagnostic sub menus.
Table 4-4. Chameleon Ultra or Chameleon Vision Submenus (Sheet 2 of 3)

RS-232 SETTING

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>New settings</td>
<td>19200, 8, N, 1</td>
</tr>
</tbody>
</table>

Turn knob for new baud rate
Press SELECT to confirm
Press EXIT to cancel

SYSTEM INFORMATION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cx:</td>
<td>-20%</td>
</tr>
<tr>
<td>Cy:</td>
<td>-32%</td>
</tr>
<tr>
<td>Px*:</td>
<td>25%</td>
</tr>
<tr>
<td>Py*:</td>
<td>-45%</td>
</tr>
<tr>
<td>Wavelength:</td>
<td>831nm</td>
</tr>
<tr>
<td>Step:</td>
<td>1564</td>
</tr>
<tr>
<td>ChamPwr:</td>
<td>1900mW</td>
</tr>
<tr>
<td>Pump:</td>
<td>8.9W</td>
</tr>
<tr>
<td>Run Hours:</td>
<td>1500</td>
</tr>
<tr>
<td>S/N:</td>
<td>1234</td>
</tr>
<tr>
<td>PSU Software:</td>
<td>7.72</td>
</tr>
<tr>
<td>Head Software:</td>
<td>7.72</td>
</tr>
<tr>
<td>Verdi Software:</td>
<td>8.88</td>
</tr>
</tbody>
</table>

* Indicates the mirror currently under powertrack servo control.

Displays key laser operating parameters:
- **Cx**: Cavity x mirror position
- **Cy**: Cavity y mirror position
- **Px**: Pump x mirror position
- **Py**: Pump y mirror position
- **Wavelength**: Current laser output wavelength in nm
- **Step**: Current stepper position
- **ChamPwr**: Current available laser output power in milliwatts
- **Pump**: Current pump laser power
- **Run Hours**: System cooling down during total shutdown, progress displayed as a percentage
- **S/N**: Chameleon Ultra or Chameleon Vision laser head serial number

The Fault Screen displays faults related to both the Chameleon Ultra, Chameleon Vision and Verdi pump lasers. If faults are active, fault codes and descriptions are also displayed. Refer to Table 6-1, “Troubleshooting/Fault Messages,” on page 6-1 for a complete list of faults and associated corrective actions.

Error 3

Power Supply Interlock Fault

press EXIT to confirm

System Shutdown

Press SELECT to continue

Press EXIT to abort

Initiates system cool-down prior to total system shut-down.
Table 4-4. Chameleon Ultra or Chameleon Vision Submenus (Sheet 3 of 3)

Alignment Mode

EXIT when finished

Reduces laser output to a nominal low power to facilitate alignment in applications where the normal operating power is likely to cause damage to sensitive components.

The laser still poses a significant laser hazard when operating in this mode and the user should follow the laser safety precautions outlined in Section Two: Laser Safety.

The INITIALISE routine should be used if the laser does not operate correctly at any particular wavelength; e. g. it gives low power or will not modelock reliably. The routine automatically tunes the laser to a preset wavelength at the peak of the gain and then scans the cavity and pump mirrors to determine the optimum alignment. Once the routine is completed, the laser automatically tunes itself to the original wavelength.

Table 4-5. Chameleon Vision Dispersion Submenus (Sheet 1 of 3)

Power: 3400mW
Curve ABC1: GDD: 13400
800nm
Status: OK

If the laser is a Chameleon Vision with integrated pre-compensation, the front screen shows the current selected curve and GDD value.

There are also several more menu screens accessible from the MAIN MENU under Dispersion Settings.
DISPERSION SETTINGS

⇒ Select Curve
 New Curve
 Delete Curve
 Calibrate Curve

SELECT DISPERSION CURVE
Selected curve: 1 abc1

 MANUAL
 ZERO
 ⇒ ABC1
 ABC2
 BLANK

NEW DISPERSION CURVE
Select curve: 3 BLANK
⇒ Enter curve name:

CURVE NAME

Turn knob for A-Z
Press knob to Set Char
Up-Down to move Cursor

VISION_1
Select-Save Exit-Cancel

DELETE DISPERSION CURVE
Selected curve: 1 ABC1

Press Select to Delete
Press Exit to Cancel

Table 4-5. Chameleon Vision Dispersion Submenus (Sheet 2 of 3)

Pre-defined curves can be selected under SELECT CURVE.

If MANUAL is selected, the GDD value can be set using the POWER ADJUST or rotary knob.

Curve 0 is always reserved for the ZERO curve. All curves beyond this can be user-defined.

If New Curve is selected then any of the available curves can be renamed.

Initiates system. If “Enter curve name” is selected the following screen is displayed.

To delete a curve, enter “Delete Dispersion Curve.”
The curve can be calibrated using a minimum of 3 points. The curve is selected using the POWER SELECT or rotary knob. Use the Menu Up-Down to go to the next parameter. Using the POWER SELECT or rotary knob, select the wavelength and GDD for each point. The maximum available GDD at that wavelength is shown.

Note that the “curve” is actually a linear interpolation between the defined points. If a wavelength is selected which is outside the defined curve then a GDD value is extrapolated from the last known data. This condition is indicated by an asterisk beside the GDD value on the front screen.

In this example, if a wavelength of 800nm is selected, a GDD value is interpolated from the solid line shown between points 0 and 1. However, if a wavelength outside the defined range is selected, then a GDD value is extrapolated from the last known data for that curve.
SECTION FIVE: EXTERNAL COMPUTER CONTROL

How to Interface the Chameleon Ultra or Chameleon Vision Laser

This section provides details on how to interface a Chameleon Ultra or Chameleon Vision V-18 laser to a remote computer via the RS-232 connector on the rear of the power supply.

The RS-232 interface is based on a set of laser control instructions, consisting of commands that affect laser operation and queries that request the laser to return status information to the host. The instruction set is sufficient to support user-written programs that emulate the functions of the Chameleon Ultra or Chameleon Vision front panel.

RS-232 Command Language

Instruction Syntax for RS-232 Communication

Communication with the Chameleon Ultra or Chameleon Vision is with two types of instructions:

- Commands that set the values of laser operating parameters.
- Queries which request the laser to return the value of an operating parameter.

Any instruction to the laser consists of a command or query written as a string of ASCII characters and terminated by a carriage return and linefeed (<CR><LF>) or a semicolon (;).

For example:

Laser = 1<CR><LF>

Switches the Chameleon Ultra or Chameleon from STANDBY to ON.

?Light<CR><LF>

Requests the laser to return the measured laser output power.
The laser always responds to an instruction by returning a message terminated by a carriage return and linefeed. Table 5-1 lists the possible responses from the laser.

Table 5-1. Response from Laser after Receiving Instruction

<table>
<thead>
<tr>
<th>INSTRUCTION SENT TO LASER</th>
<th>RESPONSE FROM LASER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ECHO OFF PROMPT OFF</td>
</tr>
<tr>
<td>Command + <CR><LF></td>
<td><CR><LF></td>
</tr>
<tr>
<td>Query + <CR><LF></td>
<td>Data + <CR><LF></td>
</tr>
</tbody>
</table>

1. Multiple items are separated by the “&” character. For example, a list of system faults is returned as “3&5&6.”

For proper handshaking, communication programs should wait until the <CR><LF> has been returned from the laser before sending the next instruction.
ECHO Mode

The Chameleon Ultra or Chameleon Vision provides an “echo” mode in which each character transmitted to the laser is echoed to the host. This feature can be turned on or off using the ECHO command.

PROMPT Mode

The Chameleon Ultra or Chameleon Vision provides a “prompt” mode for terminal operation in which the laser returns; for example, “Chameleon>” after each command. This feature can be turned on or off using the “PROMPT” command.

? The single character “?” may be substituted for “PRINT” in all queries. For example:

?LIGHT is equivalent to PRINT LIGHT

= or : The single characters = and : are equivalent delimiters between text and data in all commands. For example:

LASER = 0 is equivalent to LASER: 0
RS-232 Interface Connection

The Chameleon Ultra or Chameleon Vision Laser’s RS-232 port configuration is described in Table 5-2 and typical cable requirements are shown in Figure 5-1. The 9-pin RS-232 port is configured as data communications equipment (DCE) device using only pins 2 (serial data out), 3 (serial data in) and 5 (signal ground). Handshake lines RTS, CTS, DTR and DSR (pins 4, 6, 7 and 8) are not used and have no connections inside the power supply.

RS-232 Port Configuration

Table 5-2. RS-232 Port Description

<table>
<thead>
<tr>
<th>Configuration</th>
<th>DCE, No Handshaking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data bits</td>
<td>8</td>
</tr>
<tr>
<td>Stop bits</td>
<td>1</td>
</tr>
<tr>
<td>Parity</td>
<td>none</td>
</tr>
<tr>
<td>Baud rate</td>
<td>User selectable:</td>
</tr>
<tr>
<td></td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td>4800</td>
</tr>
<tr>
<td></td>
<td>9600</td>
</tr>
<tr>
<td></td>
<td>19200 (default factory setting)</td>
</tr>
<tr>
<td></td>
<td>38400</td>
</tr>
<tr>
<td></td>
<td>57600</td>
</tr>
</tbody>
</table>

Figure 5-1. RS-232 Pin Configuration
Setting The Baud Rate

The baud rate of the 9-pin RS-232 port can be adjusted through the “RS-232 Baudrate Setup” menu on the front panel (Figure 4-3 on page 4-10) or via the SERIAL BAUDRATE = NNN command described in Table 5-1 and Table 5-2. After the baud rate is changed, the new setting is used until it is changed even if the system power is switched off.

To set the baud rate by the remote computer, send the SERIAL BAUDRATE = NNN command to the laser at the currently set baud rate. After sending this baud rate command, host computer communications port must be reinitialized to the new baud rate.

The factory set baud rate is 19200.

When an RS-232 command is issued to change a setting, the display may not update to reflect the changes taking place in the system. The user should press MENU EXIT and MENU SELECT to update the display.
Table 5-3 (below) and Table 5-4 on page 5-8 describe the instructions (long and short forms) for use in RS-232 with the Chameleon Ultra. Table 5-5 on page 5-14 and Table 5-6 on page 5-15 describe the additional instructions available with the Chameleon Vision.

Table 5-3. Chameleon Ultra RS-232 Commands

<table>
<thead>
<tr>
<th>COMMANDS</th>
<th>ACTION PERFORMED</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAUDRATE=nnnn B=n</td>
<td>Sets the RS-232 Serial port baud rate to the specified value.</td>
</tr>
<tr>
<td></td>
<td>[nnnn = 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200.]</td>
</tr>
<tr>
<td>ECHO=n E=n</td>
<td>A change in echo mode takes effect with the first command sent after the echo command. [n = 0] Turns echo off. Characters transmitted to the laser are not echoed to the host. [n = 1] Turns echo on. Characters transmitted to the laser are echoed to the host.</td>
</tr>
<tr>
<td>FLASH=1 FL=1</td>
<td>Flash Verdi laser output below lasing threshold to allow single-frequency mode to recenter.</td>
</tr>
<tr>
<td>HOME STEPPER=1 HM=1</td>
<td>Homes the tuning motor. This action can take 3-30 seconds.</td>
</tr>
<tr>
<td>LASER=n L=n</td>
<td>Changes mode. [n = 0] Puts laser in STANDBY [n = 1] Resets faults and turns laser on. Clears fault screen on power supply and fault history (FAULT HISTORY), so lasing resumes if there are no active faults.</td>
</tr>
<tr>
<td></td>
<td>Turning the keyswitch to STANDBY and then to the ON position overrides this command.</td>
</tr>
<tr>
<td></td>
<td>Keyswitch must be in the ON position.</td>
</tr>
<tr>
<td>LBO HEATER=n LBOH=n</td>
<td>Turns LBO heater on/off. [n = 0] Off (cool down) [n = 1] On (heating)</td>
</tr>
<tr>
<td>LBO OPTIMIZE=n LBOOPT=n</td>
<td>Begins optimization routine. [n = 0] Indicates that no optimization is currently in process [n = 1] Begins optimization routine</td>
</tr>
</tbody>
</table>
Table 5-3. Chameleon Ultra RS-232 Commands (Continued)

<table>
<thead>
<tr>
<th>COMMANDS</th>
<th>ACTION PERFORMED</th>
</tr>
</thead>
</table>
| LOCK FRONT PANEL=n LFP=n | Enables/disables user input from the front panel.
 n = 1 Disabled
 n = 0 Enabled |
| PROMPT=n >=n | Turns “VERDI>” prompt on/off.
 n = 0 Off
 n = 1 On |
| SEARCH MODELOCK=n SM=n | Enables/disables search for modelocking
 n = 0 Enabled
 n = 1 Disabled |
| SHUTTER=n S=n | Changes state of the external shutter.
 n = 0 Closed
 n = 1 Open |
| WAVELENGTH=nnn VW=nnn | Sets the Chameleon Ultra wavelength to the specified value in nanometers. If the specified wavelength is beyond the lower or upper wavelength limit, the wavelength is set to the lower or upper limit. |
| WAVELENGTH STEP=nnn VWS=n | Changes the Chameleon Ultra wavelength by the specified amount in nanometers. |
| HOME STEPPER = n HM=n | Homes the tuning motor (this action can take between 3 to 30 seconds) |
| HEARTBEAT=n HB=n | When enabled, shuts the laser down if no RS-232 activity occurs within a time specified by the heartbeat rate (HBR).
 n = 1 Enables heartbeat
 n = 0 Disables heartbeat |
| HEARTBEATRATE=nnn HBR= nnn | Specifies to time-out period (between 1 to 100 seconds) for laser shut down in the absence of RS-232 activity. |
| RECOVERY=1 REQ=1 | Initiates recovery sequence.
 This action can take up to 2 minutes to complete. |
| ALIGN=n | Accesses alignment mode
 n = 1 Enters alignment mode
 n = 0 Exits alignment mode |
<table>
<thead>
<tr>
<th>QUERIES</th>
<th>RETURNED INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT LASER ?L</td>
<td>Returns status of the laser:</td>
</tr>
<tr>
<td></td>
<td>0 = Off (standby)</td>
</tr>
<tr>
<td></td>
<td>1 = On</td>
</tr>
<tr>
<td></td>
<td>2 = Off due to a fault (check faults or fault history)</td>
</tr>
<tr>
<td>PRINT KEYSWITCH ?K</td>
<td>Returns status of the keyswitch:</td>
</tr>
<tr>
<td></td>
<td>0 = Off</td>
</tr>
<tr>
<td></td>
<td>1 = On</td>
</tr>
<tr>
<td>PRINT FAULTS ?F</td>
<td>Returns a list of number codes of all active faults, separated by an “&” or Returns “System OK” if there are no active faults</td>
</tr>
<tr>
<td></td>
<td>0 = no faults</td>
</tr>
<tr>
<td></td>
<td>1 = Laser Head Interlock Fault</td>
</tr>
<tr>
<td></td>
<td>2 = External Interlock Fault</td>
</tr>
<tr>
<td></td>
<td>3 = PS Cover Interlock Fault</td>
</tr>
<tr>
<td></td>
<td>4 = LBO Temperature Fault</td>
</tr>
<tr>
<td></td>
<td>5 = LBO Not Locked at Set Temp</td>
</tr>
<tr>
<td></td>
<td>6 = Vanadate Temp. Fault</td>
</tr>
<tr>
<td></td>
<td>7 = Etalon Temp. Fault</td>
</tr>
<tr>
<td></td>
<td>8 = Diode 1 Temp. Fault</td>
</tr>
<tr>
<td></td>
<td>9 = Diode 2 Temp. Fault</td>
</tr>
<tr>
<td></td>
<td>10 = Baseplate Temp. Fault</td>
</tr>
<tr>
<td></td>
<td>11 = Heatsink 1 Temp. Fault</td>
</tr>
<tr>
<td></td>
<td>12 = Heatsink 2 Temp. Fault</td>
</tr>
<tr>
<td></td>
<td>16 = Diode 1 Over Current Fault</td>
</tr>
<tr>
<td></td>
<td>17 = Diode 2 Over Current Fault</td>
</tr>
<tr>
<td></td>
<td>18 = Over Current Fault</td>
</tr>
<tr>
<td></td>
<td>19 = Diode 1 Under Volt Fault</td>
</tr>
<tr>
<td></td>
<td>20 = Diode 2 Under Volt Fault</td>
</tr>
<tr>
<td></td>
<td>21 = Diode 1 Over Volt Fault</td>
</tr>
<tr>
<td></td>
<td>22 = Diode 2 Over Volt Fault</td>
</tr>
<tr>
<td></td>
<td>25 = Diode 1 EEPROM Fault</td>
</tr>
<tr>
<td></td>
<td>26 = Diode 2 EEPROM Fault</td>
</tr>
<tr>
<td></td>
<td>27 = Laser Head EEPROM Fault</td>
</tr>
<tr>
<td></td>
<td>28 = PS EEPROM Fault</td>
</tr>
<tr>
<td>PRINT FAULT HISTORY ?FH</td>
<td>Returns a list of number codes (see ?F) of all faults that have occurred since the last laser on command, separated by an “&”, or returns “System OK” if there are no latched faults. The “laser on” command or the EXIT button on the power supply when the fault screen is active clears the fault history and fault screen.</td>
</tr>
</tbody>
</table>
Table 5-4. Chameleon Ultra RS-232 Query Set (Sheet 2 of 6)

<table>
<thead>
<tr>
<th>QUERIES</th>
<th>RETURNED INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT SHUTTER ?S</td>
<td>Returns the status of the external shutter:</td>
</tr>
<tr>
<td></td>
<td>0 = Closed</td>
</tr>
<tr>
<td></td>
<td>1 = Open</td>
</tr>
<tr>
<td>PRINT UF POWER ?UF</td>
<td>Returns actual UF (Chameleon) power, (nnn.nn), in milliwatts.</td>
</tr>
<tr>
<td>PRINT CAVITY PEAK HOLD ?PHLDC</td>
<td>Returns the status of the cavity peak hold:</td>
</tr>
<tr>
<td></td>
<td>0 = Off</td>
</tr>
<tr>
<td></td>
<td>1 = On</td>
</tr>
<tr>
<td>PRINT CAVITY PZT MODE ?PZTMC</td>
<td>Returns the mode of the cavity PZT:</td>
</tr>
<tr>
<td></td>
<td>0 = Auto</td>
</tr>
<tr>
<td></td>
<td>1 = Manual</td>
</tr>
<tr>
<td>PRINT CAVITY PZT X ?PZTXC</td>
<td>Returns the cavity PZT X (Rd) voltage, (n.nn), in volts.</td>
</tr>
<tr>
<td>PRINT CAVITY PZT Y ?PZTYC</td>
<td>Returns the cavity PZT Y (Rd) voltage, (n.nn), in volts.</td>
</tr>
<tr>
<td>PRINT PUMP PEAK HOLD ?PHLDP</td>
<td>Returns the status of the pump peak hold:</td>
</tr>
<tr>
<td></td>
<td>0 = Off</td>
</tr>
<tr>
<td></td>
<td>1 = On</td>
</tr>
<tr>
<td>PRINT PUMP PZT MODE ?PZTMP</td>
<td>Returns the mode of the pump PZT:</td>
</tr>
<tr>
<td></td>
<td>0 = Auto</td>
</tr>
<tr>
<td></td>
<td>1 = Manual</td>
</tr>
<tr>
<td>PRINT PUMP PZT X ?PZTXP</td>
<td>Returns pump PZT X (Rd) voltage, (n.nn), in volts.</td>
</tr>
<tr>
<td>PRINT PUMP PZT Y ?PZTYP</td>
<td>Returns pump PZT Y (Rd) voltage, (n.nn), in volts.</td>
</tr>
<tr>
<td>PRINT POWER TRACK ?PTRK</td>
<td>Returns state of the PowerTrack:</td>
</tr>
<tr>
<td></td>
<td>0 = Off</td>
</tr>
<tr>
<td></td>
<td>1 = On</td>
</tr>
<tr>
<td>PRINT MODELOCKED ?MDLK</td>
<td>Returns state of the Chameleon Ultra:</td>
</tr>
<tr>
<td></td>
<td>0 = Off (Standby)</td>
</tr>
<tr>
<td></td>
<td>1 = Modelocked</td>
</tr>
<tr>
<td></td>
<td>2 = CW</td>
</tr>
<tr>
<td>PRINT PUMP SETTING ?PP</td>
<td>Returns pump power setpoint as fraction of QS to CW pump band.</td>
</tr>
</tbody>
</table>
Table 5-4. Chameleon Ultra RS-232 Query Set (Sheet 3 of 6)

<table>
<thead>
<tr>
<th>QUERIES</th>
<th>RETURNED INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT TUNING STATUS ?TS</td>
<td>Returns the tuning status:</td>
</tr>
<tr>
<td></td>
<td>0 = Ready (i.e. no tuning operation being performed)</td>
</tr>
<tr>
<td></td>
<td>1 = Tuning in progress</td>
</tr>
<tr>
<td></td>
<td>2 = Search for Modelock in progress</td>
</tr>
<tr>
<td></td>
<td>3 = Recovery operation in progress</td>
</tr>
<tr>
<td>PRINT SEARCH MODELOCK ?SM</td>
<td>Returns the status of search for modelocking:</td>
</tr>
<tr>
<td></td>
<td>0 = Disabled</td>
</tr>
<tr>
<td></td>
<td>1 = Enabled</td>
</tr>
<tr>
<td>PRINT HOMED ?HM</td>
<td>Returns the homing status of the tuning motor:</td>
</tr>
<tr>
<td></td>
<td>0 = Has not been homed</td>
</tr>
<tr>
<td></td>
<td>1 = Has been homed</td>
</tr>
<tr>
<td>PRINT WAVELENGTH ?VW</td>
<td>Returns the last commanded UF (Chameleon) wavelength, (nnn), in nanometers.</td>
</tr>
<tr>
<td>PRINT STEPPER POSITION ?STPRPOS</td>
<td>Returns the position (counts) that the motor was last moved to for a desired tuning.</td>
</tr>
<tr>
<td>PRINT CURRENT ?C</td>
<td>Returns the measured average diode current, (nn.n), in amps.</td>
</tr>
<tr>
<td>PRINT DIODE1 CURRENT ?D1C</td>
<td>Returns laser diode #1 measured current, (nn.n), in amps.</td>
</tr>
<tr>
<td>PRINT DIODE2 CURRENT ?D2C</td>
<td>Returns laser diode #2 measured current, (nn.n), in amps.</td>
</tr>
<tr>
<td>PRINT BASEPLATE TEMP ?BT</td>
<td>Returns laser head baseplate measured temperature, (nn.nn), in °C.</td>
</tr>
<tr>
<td>PRINT DIODE1 TEMP ?D1T</td>
<td>Returns laser diode #1 measured temperature, (nn.nn), in °C.</td>
</tr>
<tr>
<td>PRINT DIODE2 TEMP ?D2T</td>
<td>Returns laser diode #2 measured temperature, (nn.nn), in °C.</td>
</tr>
<tr>
<td>PRINT VANADATE TEMP ?VT</td>
<td>Returns vanadate measured temperature, (nn.nn), in °C.</td>
</tr>
<tr>
<td>PRINT LBO TEMP ?LBOT</td>
<td>Returns LBO measured temperature, (nnn.nn), in °C.</td>
</tr>
<tr>
<td>PRINT ETALON TEMP ?ET</td>
<td>Returns etalon measured temperature, (nn.nn), in °C.</td>
</tr>
<tr>
<td>PRINT DIODE1 SET TEMP ?D1ST</td>
<td>Returns laser diode #1 set temperature, (nn.nn), in °C.</td>
</tr>
<tr>
<td>PRINT DIODE2 SET TEMP ?D2ST</td>
<td>Returns laser diode #2 set temperature, (nn.nn), in °C.</td>
</tr>
</tbody>
</table>
Table 5-4. Chameleon Ultra RS-232 Query Set (Sheet 4 of 6)

<table>
<thead>
<tr>
<th>Queries</th>
<th>Returned Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT VANADATE SET TEMP ?VST</td>
<td>Returns vanadate set temperature, (nn.nn), in °C.</td>
</tr>
<tr>
<td>PRINT LBO SET TEMP ?LBOST</td>
<td>Returns LBO set temperature, (nnn.nn), in °C.</td>
</tr>
<tr>
<td>PRINT ETALON SET TEMP ?EST</td>
<td>Returns etalon set temperature, (nn.nn), in °C.</td>
</tr>
<tr>
<td>PRINT DIODE1 TEMP DRIVE ?D1TD</td>
<td>Returns laser diode #1 temperature servo drive setting.</td>
</tr>
<tr>
<td>PRINT DIODE2 TEMP DRIVE ?D2TD</td>
<td>Returns laser diode #2 temperature servo drive setting.</td>
</tr>
<tr>
<td>PRINT VANADATE DRIVE ?VD</td>
<td>Returns vanadate temperature servo drive setting.</td>
</tr>
<tr>
<td>PRINT LBO DRIVE ?LBOD</td>
<td>Returns LBO temperature servo drive setting.</td>
</tr>
<tr>
<td>PRINT ETALON DRIVE ?ED</td>
<td>Returns etalon temperature servo drive setting.</td>
</tr>
<tr>
<td>PRINT DIODE1 HEATSINK TEMP ?D1HST</td>
<td>Returns laser diode #1 heat sink measured temperature, (nn.nn), in °C.</td>
</tr>
<tr>
<td>PRINT DIODE2 HEATSINK TEMP ?D2HST</td>
<td>Returns laser diode #2 heat sink measured temperature, (nn.nn), in °C.</td>
</tr>
<tr>
<td>PRINT LBO HEATER ?LBOH</td>
<td>Returns the status of the LBO heater:</td>
</tr>
<tr>
<td></td>
<td>(0 =) Off (cooldown)</td>
</tr>
<tr>
<td></td>
<td>(1 =) On (heating)</td>
</tr>
<tr>
<td>PRINT LIGHT REG STATUS ?LRS</td>
<td>Returns the status of the light loop servo:</td>
</tr>
<tr>
<td></td>
<td>(0 =) Open (current regulation)</td>
</tr>
<tr>
<td></td>
<td>(1 =) Locked</td>
</tr>
<tr>
<td></td>
<td>(2 =) Seeking</td>
</tr>
<tr>
<td></td>
<td>(3 =) Fault</td>
</tr>
<tr>
<td>PRINT DIODE1 SERVO STATUS ?D1SS</td>
<td>Returns the status of diode #1 temperature servo:</td>
</tr>
<tr>
<td></td>
<td>(0 =) Open</td>
</tr>
<tr>
<td></td>
<td>(1 =) Locked</td>
</tr>
<tr>
<td></td>
<td>(2 =) Seeking</td>
</tr>
<tr>
<td></td>
<td>(3 =) Fault</td>
</tr>
</tbody>
</table>
Table 5-4. Chameleon Ultra RS-232 Query Set (Sheet 5 of 6)

<table>
<thead>
<tr>
<th>Queries</th>
<th>Returned Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT DIODE2 SERVO STATUS ?D2SS</td>
<td>Returns the status of diode #2 temperature servo: 0 = Open, 1 = Locked, 2 = Seeking, 3 = Fault</td>
</tr>
<tr>
<td>PRINT VANADATE SERVO STATUS ?VSS</td>
<td>Returns the status of the vanadate temperature servo: 0 = Open, 1 = Locked, 2 = Seeking, 3 = Fault</td>
</tr>
<tr>
<td>PRINT LBO SERVO STATUS ?LBOSS</td>
<td>Returns the status of the LBO temperature servo: 0 = Open, 1 = Locked, 2 = Seeking, 3 = Fault</td>
</tr>
<tr>
<td>PRINT ETALON SERVO STATUS ?ESS</td>
<td>Returns the status of the etalon temperature servo: 0 = Open, 1 = Locked, 2 = Seeking, 3 = Fault</td>
</tr>
<tr>
<td>PRINT DIODE1 HOURS ?D1H</td>
<td>Returns the number of operating hours on laser diode #1.</td>
</tr>
<tr>
<td>PRINT DIODE2 HOURS ?D2H</td>
<td>Returns the number of operating hours on laser diode #2.</td>
</tr>
<tr>
<td>PRINT HEAD HOURS ?HH</td>
<td>Returns the number of operating hours on the system head.</td>
</tr>
<tr>
<td>PRINT DIODE1 VOLTAGE ?D1V</td>
<td>Returns the measured voltage across diode #1, (n.n), in volts.</td>
</tr>
<tr>
<td>PRINT DIODE2 VOLTAGE ?D2V</td>
<td>Returns the measured voltage across diode #2, (n.n), in volts.</td>
</tr>
<tr>
<td>PRINT SOFTWARE ?SV</td>
<td>Returns the version number of the power supply software.</td>
</tr>
<tr>
<td>PRINT MODEM BAUDRATE ?MB</td>
<td>Returns the present modem port baudrate.</td>
</tr>
<tr>
<td>PRINT POWER SUPPLY ID ?PI</td>
<td>Returns “2BC” or “2BS” for 2-bar power supply, “1BC” or “1BS” for 1-bar power supply.</td>
</tr>
<tr>
<td>PRINT BAT VOLTS ?BV</td>
<td>Returns the measured voltage across the battery, (nn.nn), in volts.</td>
</tr>
<tr>
<td>QUERIES</td>
<td>RETURNED INFORMATION</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>PRINT AUTOMODELOCK ?AMDLK</td>
<td>Returns the status if the automodelock routing:</td>
</tr>
<tr>
<td></td>
<td>n = 1 Enabled</td>
</tr>
<tr>
<td></td>
<td>n = 0 Disabled</td>
</tr>
<tr>
<td>PRINT PZT CONTROL STATE ?PZTS</td>
<td>Returns an integer, followed by a space, followed by a short text of the PZT control state as displayed on the PZT Control Screen.</td>
</tr>
<tr>
<td>PRINT TUNING LIMIT MAX ?TMAX</td>
<td>Returns value of maximum available wavelength in nm.</td>
</tr>
<tr>
<td>PRINT TUNING LIMIT MIN ?TMIN</td>
<td>Returns value of minimum available wavelength in nm.</td>
</tr>
<tr>
<td>?ALIGN</td>
<td>Returns the status of the alignment mode:</td>
</tr>
<tr>
<td></td>
<td>n = 1 Enabled</td>
</tr>
<tr>
<td></td>
<td>n = 0 Disabled</td>
</tr>
<tr>
<td>?ALIGNP</td>
<td>Returns the laser power available in mW with alignment mode enabled.</td>
</tr>
<tr>
<td>?ALIGNW</td>
<td>Returns the alignment mode laser wavelength in nm.</td>
</tr>
<tr>
<td>?LFP</td>
<td>Returns the lock front panel status.</td>
</tr>
<tr>
<td></td>
<td>n = 1 Locked</td>
</tr>
<tr>
<td></td>
<td>n = 0 Unlocked</td>
</tr>
<tr>
<td>?PZTXCM</td>
<td>Returns the last power map result for the cavity X PZT position as a percentage of the available range.</td>
</tr>
<tr>
<td>?PZTXCP</td>
<td>Returns the current cavity X PZT position as a percentage of the available range.</td>
</tr>
<tr>
<td>?PZTXPM</td>
<td>Returns the last power map result for the pump X PZT position as a percentage of the available range.</td>
</tr>
<tr>
<td>?PZTXPP</td>
<td>Returns the current pump X PZT position as a percentage of the available range.</td>
</tr>
<tr>
<td>?PZTYCM</td>
<td>Returns the last power map result for the cavity Y PZT position as a percentage of the available range.</td>
</tr>
<tr>
<td>?PZTYCP</td>
<td>Returns the current cavity Y PZT position as a percentage of the available range.</td>
</tr>
<tr>
<td>PZTYPM</td>
<td>Returns the last power map result for the pump Y PZT position as a percentage of the available range.</td>
</tr>
<tr>
<td>?PZTYPP</td>
<td>Returns the current pump Y PZT position as a percentage of the available range.</td>
</tr>
<tr>
<td>?RH</td>
<td>Returns the relative humidity as a percentage value.</td>
</tr>
<tr>
<td>?SN</td>
<td>Returns the Chameleon Ultra serial number.</td>
</tr>
<tr>
<td>?ST</td>
<td>Returns the current operating status as a text string, such as “Starting” or “OK”.</td>
</tr>
</tbody>
</table>
Table 5-5. Chameleon Vision RS-232 Commands

<table>
<thead>
<tr>
<th>COMMANDS</th>
<th>ACTION PERFORMED</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDDCURVE=xx</td>
<td>Sets the GDD calibration curve.</td>
</tr>
<tr>
<td></td>
<td>xx = curve number</td>
</tr>
<tr>
<td></td>
<td>This switches the system into auto GDD.</td>
</tr>
<tr>
<td></td>
<td>Reserve curve 0 for zero dispersion curve.</td>
</tr>
<tr>
<td>GDD=xxxxx</td>
<td>Manually sets the GDD value.</td>
</tr>
<tr>
<td></td>
<td>xxxxx = GDD in fs(^2)</td>
</tr>
<tr>
<td></td>
<td>This switches the system into manual GDD.</td>
</tr>
<tr>
<td>GDDCURVEN=xxxxxx</td>
<td>Selects the GDD curve by name xxxxxx</td>
</tr>
<tr>
<td>SETCURVEN:x=yyyyyy</td>
<td>Changes the name of calibration curve x to yyyyyy.</td>
</tr>
<tr>
<td></td>
<td>Note: All curve names are automatically converted to upper case.</td>
</tr>
<tr>
<td>SETCURVEPT:ww=x:</td>
<td>Changes curve ww point x to zzzzz fs(^2) at yyyy nm.</td>
</tr>
<tr>
<td>yyyy:zzzzz</td>
<td></td>
</tr>
<tr>
<td>SAVECURVE:x</td>
<td>Saves the values input via the SETCURVEPT command, where x is the relevant curve number.</td>
</tr>
<tr>
<td>DELCURVE=xx</td>
<td>Deletes curve number xx.</td>
</tr>
</tbody>
</table>
Table 5-6. Chameleon Vision RS-232 Query Set

<table>
<thead>
<tr>
<th>QUERIES</th>
<th>RETURNED INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>?GDDCURVE</td>
<td>Returns the current calibration curve by curve number</td>
</tr>
<tr>
<td>?GDD</td>
<td>Query current GDD setting</td>
</tr>
<tr>
<td></td>
<td>Returns yyyyy where yyyyy is the GDD in fs2 or yyyyy X, where the character X denotes that the value has been extrapolated from limited calibration data</td>
</tr>
<tr>
<td>?GDDCURVEN</td>
<td>Returns the current curve by name</td>
</tr>
<tr>
<td>?CURVEN:x</td>
<td>Returns the name of current curve number x</td>
</tr>
<tr>
<td>?CURVEPT:ww=x</td>
<td>Query values of curve ww point x</td>
</tr>
<tr>
<td></td>
<td>Returns: zzzzz yyyy where zzzzz is GDD, yyyy is wavelength</td>
</tr>
<tr>
<td>?CURVE:ww</td>
<td>Query calibration values for curve ww</td>
</tr>
<tr>
<td></td>
<td>Returns array of calibration points:</td>
</tr>
<tr>
<td></td>
<td>x1 yyyy1 zzzz1</td>
</tr>
<tr>
<td></td>
<td>x2 yyyy2 zzzz2</td>
</tr>
<tr>
<td></td>
<td>x3 yyyy3 zzzz3</td>
</tr>
<tr>
<td></td>
<td>etc.</td>
</tr>
<tr>
<td>?COMP</td>
<td>Returns 0 if pre-compensator disabled, 1 if enabled</td>
</tr>
<tr>
<td>?HMCOMP</td>
<td>Query precompensator stepper, Returns 0 if not homed, 1 if homed.</td>
</tr>
<tr>
<td>?GDDMAX</td>
<td>Returns the maximum GDD value available at the current wavelength.</td>
</tr>
<tr>
<td>?GDDMIN</td>
<td>Returns the minimum GDD value available at the current wavelength.</td>
</tr>
<tr>
<td>?GDDMAX:xxxx</td>
<td>Returns the maximum GDD value available at wavelength xxxxnm.</td>
</tr>
<tr>
<td>?GDDMIN:xxxx</td>
<td>Returns the minimum GDD value available at wavelength xxxxnm.</td>
</tr>
</tbody>
</table>
Do not open the Chameleon Ultra or Chameleon Vision laser head. There are no user serviceable components or adjustments inside. There are dangerous high voltage currents and hazardous levels of laser energy inside the laser head. There is no cover interlock to eliminate these dangers upon removal of the laser head cover.

Troubleshooting

Table 6-1 lists possible problems/error messages with a reference to the associated troubleshooting checklist located in this section.

Table 6-1. Troubleshooting/Fault Messages (Sheet 1 of 3)

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>TROUBLESHOOTING REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump laser does not start (no laser output)</td>
<td>Checklist 1</td>
</tr>
<tr>
<td>Pump laser shuts down</td>
<td>Checklist 1</td>
</tr>
<tr>
<td>Chameleon Ultra laser output unstable</td>
<td>Checklist 2</td>
</tr>
<tr>
<td>AC ON indicator on power supply front panel does not light when power</td>
<td>Checklist 3</td>
</tr>
<tr>
<td>switch on rear panel is ON.</td>
<td></td>
</tr>
<tr>
<td>LASER EMISSION indicator on power supply front panel or on the laser</td>
<td>[1]</td>
</tr>
<tr>
<td>head does not light when keyswitch is in the ON position.</td>
<td></td>
</tr>
</tbody>
</table>

FAULT MESSAGES:

Fault Code 1: Head interlock fault	[1]
Fault Code 2: External interlock fault	Checklist 4
Fault Code 3: Power supply cover interlock fault	Checklist 5

[1] Contact Coherent or an authorized representative. If the laser system or components must be returned directly to Coherent, an RMA (Return Material Authorization) number is required.
Table 6-1. Troubleshooting/Fault Messages (Sheet 2 of 3)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Troubleshooting Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault Code 4: LBO temperature fault</td>
<td>Checklist 6</td>
</tr>
<tr>
<td>Fault Code 5: LBO Not Locked at Set Temperature</td>
<td>Checklist 6</td>
</tr>
<tr>
<td>Fault Code 6: Vanadate temperature fault</td>
<td>Checklist 6</td>
</tr>
<tr>
<td>Fault Code 7: Etalon temperature fault</td>
<td>Checklist 6</td>
</tr>
<tr>
<td>Fault Code 8: Diode 1 temperature fault</td>
<td>Checklist 6</td>
</tr>
<tr>
<td>Fault Code 9: Diode 2 temperature fault</td>
<td>Checklist 6</td>
</tr>
<tr>
<td>Fault Code 10: Baseplate temperature fault</td>
<td>Checklist 7</td>
</tr>
<tr>
<td>Fault Code 11: Diode heat sink 1 temperature fault</td>
<td>Checklist 8</td>
</tr>
<tr>
<td>Fault Code 12: Diode heat sink 2 temperature fault</td>
<td>Checklist 8</td>
</tr>
<tr>
<td>Fault Code 16: Diode 1 over current fault</td>
<td>Checklist 9</td>
</tr>
<tr>
<td>Fault Code 17: Diode 2 over current fault</td>
<td>Checklist 9</td>
</tr>
<tr>
<td>Fault Code 18: Over current fault</td>
<td>Checklist 9</td>
</tr>
<tr>
<td>Fault Code 19: Diode 1 under voltage fault</td>
<td>Checklist 10</td>
</tr>
<tr>
<td>Fault Code 20: Diode 2 under voltage fault</td>
<td>Checklist 10</td>
</tr>
<tr>
<td>Fault Code 21: Diode 1 over voltage fault</td>
<td>Checklist 10</td>
</tr>
<tr>
<td>Fault Code 22: Diode 2 over voltage fault</td>
<td>Checklist 10</td>
</tr>
<tr>
<td>Fault Code 25: Diode 1 EEPROM fault</td>
<td>Checklist 11</td>
</tr>
<tr>
<td>Fault Code 26: Diode 2 EEPROM fault</td>
<td>Checklist 11</td>
</tr>
<tr>
<td>Fault Code 27: Laser Head EEPROM fault</td>
<td>Checklist 11</td>
</tr>
<tr>
<td>Fault Code 28: Power Supply EEPROM fault</td>
<td>Checklist 11</td>
</tr>
<tr>
<td>Fault Code 29: Power supply-head mismatch fault</td>
<td>Checklist 11</td>
</tr>
<tr>
<td>Fault Code 30: LBO battery fault</td>
<td>Checklist 12</td>
</tr>
<tr>
<td>Fault Code 31: Shutter state mismatch</td>
<td>Checklist 13</td>
</tr>
<tr>
<td>Fault Code 32: CPU PROM Checksum Fault</td>
<td>Checklist 11</td>
</tr>
<tr>
<td>Fault Code 33: Head PROM Checksum Fault</td>
<td>Checklist 11</td>
</tr>
</tbody>
</table>
Table 6-1. Troubleshooting/Fault Messages (Sheet 3 of 3)

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>TROUBLESHOOTING REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault Code 34: Diode1 PROM Checksum Fault</td>
<td>Checklist 11</td>
</tr>
<tr>
<td>Fault Code 35: Diode2 PROM Checksum Fault</td>
<td>Checklist 11</td>
</tr>
<tr>
<td>Fault Code 36: CPU PROM Range Fault</td>
<td>Checklist 11</td>
</tr>
<tr>
<td>Fault Code 37: Head PROM Range Fault</td>
<td>Checklist 11</td>
</tr>
<tr>
<td>Fault Code 38: Diode1 PROM Range Fault</td>
<td>Checklist 11</td>
</tr>
<tr>
<td>Fault Code 39: Diode2 PROM Range Fault</td>
<td>Checklist 11</td>
</tr>
<tr>
<td>Fault Code 40: Head - Diode Mismatch</td>
<td>Checklist 11</td>
</tr>
<tr>
<td>Fault Code 41: Not Used</td>
<td>—</td>
</tr>
<tr>
<td>Fault Code 42: Not Used</td>
<td>—</td>
</tr>
<tr>
<td>Fault Code 43: Lost Modelock Fault</td>
<td>Checklist 14</td>
</tr>
<tr>
<td>Fault Code 45: Not Used</td>
<td>—</td>
</tr>
<tr>
<td>Fault Code 46: Not Used</td>
<td>—</td>
</tr>
<tr>
<td>Fault Code 47: Ti:SAP Temperature Fault</td>
<td>Checklist 15</td>
</tr>
<tr>
<td>Fault Code 48: Not Used</td>
<td>—</td>
</tr>
<tr>
<td>Fault Code 49: PZTx Fault</td>
<td>Checklist 16</td>
</tr>
<tr>
<td>Fault Code 50: Cavity humidity fault’</td>
<td>Checklist 17</td>
</tr>
<tr>
<td>Fault Code 51: Tuning stepper motor homing fault</td>
<td>Checklist 18</td>
</tr>
<tr>
<td>Fault Code 52: Lasing Fault</td>
<td>Checklist 14, 16</td>
</tr>
<tr>
<td>Fault Code 53: Laser failed to begin modelocking</td>
<td>Checklist 14, 16</td>
</tr>
<tr>
<td>Fault Code 54: Headboard communication fault</td>
<td>Checklist 12</td>
</tr>
<tr>
<td>Fault Code 55: System lasing fault</td>
<td>Checklist 14, 16</td>
</tr>
<tr>
<td>Fault Code 56 Power supply---head EEPROM mismatch fault</td>
<td>Checklist 12</td>
</tr>
<tr>
<td>Fault Code 57: Modelock slit stepper motor homing fault</td>
<td>Checklist 18</td>
</tr>
<tr>
<td>Fault 58 - CHAMELEON_VERDIEPROM_FAULT</td>
<td>—</td>
</tr>
<tr>
<td>Fault 59 - CHAMELEON PRECOMPENSATOR HOMING FAULT</td>
<td>—</td>
</tr>
<tr>
<td>Fault 60 - CHAMELEON_CURVEEPROM_FAULT</td>
<td>—</td>
</tr>
</tbody>
</table>
Checklist 1:
Pump Laser Does Not Start, Pump Laser Shuts Down

If the Verdi pump laser cannot be started, or if the laser shuts down while operating, check the following items. DO NOT look into the laser head emission port, under any circumstances.

- **Examine the pump and cavity PZT values in the SYSTEM INFORMATION menu**. PZT values that are outside the range -80% to 80% indicate that the initialize routine should be run (see Table 4-4 on page 4-11 for Chameleon sub-menus).
- **Verify the AC Power indicator** on the front panel of the power supply is lit. If not, refer to Checklist 3.
- **Access both “FAULT STATUS” menus**. Correct any existing faults. Refer to fault-specific troubleshooting checklists.
- **Verify no external beam blocks or shutters are blocking the laser beam**.
- **Verify power setpoint of the system**.
- **Verify that the laser has not been put into Standby using the RS-232 command L=0**. If the system is in RS-232 activated Standby, the Main menu reports “RS232 Key Standby”.
- **Verify the setpoint temperatures of the vanadate, LBO, diode 1, diode 2, Ti:Sapphire and etalon are at the values noted on the system data sheet (or weekly log book)**. Verify the actual temperatures of these components are equal to the programmed setpoints.
- **Verify the chiller is turned on and the cooling water is circulating through the baseplate**.
- **Verify the diode heatsink temperatures are not close to the maximum temperatures of 65°C and the diode temperatures are not close to the maximum temperatures of 45°C**. Diode heatsink temperatures are displayed in the “Laser Status” screen. Diode temperatures are displayed in the “Servo Status” screen.
- **Verify the power supply fans are operating, the rear panel air filter is clean and the power supply cooling air intakes and exhausts are not blocked**.
- **Access the “SERVO STATUS” menu and verify all temperature servo loops are locked**.
- **Disconnect any user-supplied electrical interfaces to the system**. Replace any user-supplied interlocks with the interlock supplied with the system. Attempt to operate the laser.

If none of these checkpoints indicate the source of the problem or if further troubleshooting advice is required, contact Coherent Service or an authorized service representative.
If the laser power is noisy, fluctuating, or otherwise unstable, check the following items. DO NOT look into the laser head emission port, under any circumstances.

1. **Verify the ambient room temperature and the laser head heat sink temperature are not excessively unstable or abnormally high or low.** Verify the flow and temperature of the cooling water are stable and at their setpoints. Verify the laser baseplate temperature is stable.

2. **Access both “FAULT STATUS” menus.** Correct any existing faults. Refer to relevant fault-specific troubleshooting checklists.

3. **Check the laser power stability with an external power meter.**

4. **Verify the laser is operating within its specified wavelength range.** Change the wavelength slightly, so that the laser reverts to the automatic default power setting. Re-evaluate power stability.

5. **View the Verdi pump power stability and the Chameleon Ultra or Chameleon Vision power stability in the top-level menu,** to determine whether the instability originates with the Verdi pump laser, or the VPUF head.

6. **Verify that the laser is not running at a power below the Q-Switch limit or above the CW-Breakthrough limit.**

7. **Verify the setpoint temperatures of the vanadate, LBO, diode 1, diode 2, Ti:Sapphire and etalon are at the values noted on the system data sheet (or weekly log book).** Verify the actual temperatures of these components are equal to the programmed setpoints.

8. **The laser output may require a short period of warm up time to stabilize the temperature servos.** Access the “SERVO STATUS” menu and verify all temperature servos are locked. Allow the laser to run at desired power for 60 minutes, to allow head temperatures to stabilize. Reassess laser power stability after this warm up period.

9. **Watch the temperatures displayed in the “SERVO STATUS” menu,** for a few minutes. Verify that temperatures are not fluctuating.

10. **When the laser is running at setpoint power, verify that none of the drives displayed in the “SERVO STATUS” menu are constantly set to values of -8192, +8192 or 0.**

11. **When the laser is running at setpoint power, watch the current values displayed in the “Diode Parameters” screen,** to verify that they are not unstable.
If possible, measure the characteristic frequency of the noise or power fluctuations.

Verify the noise does not originate with the AC power supplied to the laser.

Consult the laser maintenance logbook to identify any recent maintenance procedures or system changes that may have provoked the power instability.

If none of these checkpoints indicate the source of the problem or if further troubleshooting advice is required, contact Coherent Service or an authorized service representative.

Checklist 3:

“AC ON” Indicator Off

If the “AC ON” Indicator on the front panel of the power supply is not lit, check the following items:

- Verify the power cord is connected to an active facility power source. Verify the power cord is not damaged and is securely connected to the laser power supply and to facility power. Verify the power switch on the rear panel of the power supply is on.

- After performing “Complete Shut-down” on page 4-4, disconnect the laser system from facility power and remove the fuse. Check the power supply fuse. Replace if necessary. Refer to the fuse replacement procedure later in this section for details. Verify continuity (closed circuit) between the two fuse terminals in the power supply.

If none of these checkpoints indicate the source of the problem or if further troubleshooting advice is required, contact Coherent Service or an authorized service representative.

Checklist 4:

External Interlock Fault

The laser does not operate with the external interlock circuit open. The external interlock circuit can be closed with a Coherent-supplied interlock that plugs into the rear panel of the power supply, or with a user-supplied circuit. If an external interlock fault is displayed, check the following items:

- Press MENU EXIT to clear the fault display. If the fault does not clear, a fault message appears on the main menu and on the Fault Status menu.

- Check that MRU is switched on and operating correctly.
Ensure the Coherent-supplied or user-supplied external interlock is securely connected to the EXTERNAL INTERLOCK connector on the MRU rear panel.

If a user-supplied interlock is installed, turn the keyswitch to STANDBY and replace the user interlock circuit with the external interlock supplied by Coherent. If the fault clears, the user-supplied interlock is defective.

Verify continuity of the interlock.

Turn the power switch on the rear panel of the power OFF for approximately 10 seconds. Turn the switch ON.

If the fault persists, contact Coherent Service or an authorized service representative.

Checklist 5:

PS Cover Interlock Fault

The power supply interlock is triggered if the power supply cover is not securely fastened to the power supply chassis. If the power supply interlock fault is triggered, check the following items:

- Turn the keyswitch to STANDBY. Ensure the power supply cover is secure and all screws are fully tightened.
- Press EXIT to clear the fault. If the fault does not clear, a fault message appears on the main menu and the Fault Status menu.
- Turn the power switch on the rear panel of the power OFF for approximately 10 seconds. Turn the switch ON.

If the fault persists, contact Coherent Service or an authorized service representative.
Checklist 6: LBO, Vanadate, Vanadate 2, Etalon, Diode 1 and Diode 2 Temperature Faults, LBO Not Locked at Set Temperature Fault

A temperature fault indicates the actual temperature is outside the acceptable range. The “LBO Not locked at Set Temperature” fault is triggered when the LBO temperature deviates more than 1°C from the setpoint. If any of the LBO, vanadate, etalon, diode 1, or diode 2 temperature faults are triggered, check the following items:

[] Press EXIT to clear the fault. If the fault does not clear, a fault message appears on the main menu, as well as the Fault Status menu.

[] If the AC power to the laser has just been turned on, allow 60 minutes for the temperatures to stabilize.

[] For diode 1 or diode 2 temperature faults, verify the power supply cooling air intakes and exhausts are not obstructed.

If the fault persists, record the following system settings and contact Coherent Service or an authorized service representative.

[] Access the “Temperature Setpoints” menu and verify the setpoint temperature is the same as on the test sheet.

[] Access the “Servo Status” menu and verify servo loop is not “open”. Verify the servo drive is not at -8192, 0, or +8192.

If temperature setpoints are incorrect, servo loops are open, or drives are at -8192, 0 or +8192, the laser must be serviced by a trained service engineer.

Checklist 7: Baseplate Temperature Fault

A baseplate temperature fault indicates the laser head baseplate temperature has exceeded 40°C and the laser has shut down to prevent thermal damage to any head components. If the baseplate temperature fault is triggered, check the following items:

[] Press EXIT to clear the fault display. If the fault does not clear, a fault message is displayed on the main menu as well as the Fault Status menu.

[] Verify the ambient temperature is not abnormally high. Verify the chiller water temperature is at its setpoint. Verify the cooling water flow is normal and unobstructed through the laser head by disconnecting the chiller water return hose.

The laser system must cool down and the facility power disabled before verifying the cooling water flow through the laser head.

[] Ensure the head is not located near a heat-generating source.
Maintenance and Troubleshooting

[] Turn the power switch on the rear panel of the power supply off for approximately 10 seconds. Turn the power supply on.

If the fault persists and the ambient temperature and laser head location and heatsinking meet the above requirements, contact Coherent Service or an authorized service representative.

Checklist 8: Diode Heat Sink Temperature Fault

A diode heatsink temperature fault is generated when the diode heatsink temperature exceeds 65°C. If either diode 1 or diode 2 heatsink temperature fault is triggered, check the following:

[] Press EXIT to clear the fault display. If the fault does not clear, a fault message is displayed on the main menu as well as the Fault Status menu.

[] Verify the cooling fans in the power supply are not obstructed and are running. The fans may be viewed after removing the air filter in the rear panel of the power supply.

[] Verify the power supply cooling air intakes and exhausts are not obstructed. If other equipment is located directly on top of the power supply, relocate it elsewhere, so that the cooling vents on top of the power supply are free of obstruction.

[] Clean the air filter on the rear panel of the power supply. Refer to the procedure in this chapter for details.

[] Verify the power supply is not located near a heat source.

[] Verify the ambient temperature is not excessively high.

[] Verify the diode actual and setpoint temperatures are correct.

If the fault persists and the ambient temperature and power supply location meet the above requirements, contact Coherent Service or an authorized service representative.
Checklist 9:
Diode Over Current Faults

When the diode current reaches the maximum current, an over current fault is triggered. An over current fault may be indicative of a non-optimized laser system. Check the following:

[] Press EXIT to clear the fault display. If the fault does not clear, a fault message is displayed on the main menu as well as the Fault Status menu.

[] Access the “Temperature Setpoints” menu and verify the LBO, vanadate 1, vanadate 2, etalon, diode 1 and diode 2 actual and setpoint temperatures are the same as on the test sheet. (Diode 1 and diode 2 setpoint temperatures may be slightly different from the temperatures noted on the test sheet, due to subsequent diode optimizations.)

[] Access the “Servo Status” menu and verify all servos are locked.

[] Optimize the LBO temperature. (Refer to “FAP-I Temperature Optimization” on page 6-28.)

[] Run the laser at the highest power that can be accessed without triggering the over current fault. Access the “Diode Parameters Screen”. Examine the values of “Diode 1 Photocell” and “Diode 2 Photocell”. If one or both of these values are significantly greater than 2.5 V, or near-zero, that FAP-I may need to be replaced.

Contact Coherent technical support or a local service representative to assist in determining the need for FAP-I replacement.

Checklist 10:
Diode Under Voltage, Diode Over Voltage Faults

The diode under voltage and over voltage faults indicates that the voltage between the diode anode and cathode is beyond the acceptable range. Should either of these faults occur, check the following:

[] Press EXIT to clear the fault display. If the fault does not clear, a fault message is displayed on the main menu as well as the Fault Status menu.

[] Turn the power switch on the rear panel of the power supply off for approximately 10 seconds. Turn the power supply on.

[] Move the keyswitch to the STANDBY position. Remove the power supply cover. Visually verify the anode and cathode cables are connected correctly and securely to the FAP-I terminals and the anode/cathode-shorting clip has been removed. If any cables appear loose or disconnected, perform the procedure “Complete Shut-down” on page 4-4 before proceeding.
If there is no visible cause of the under/over voltage fault, the FAP-I may require replacement. Contact Coherent technical support or a local service representative to assist in determining the need for FAP-I replacement.

Checklist 11:
Diode EEPROM,
Laser Head EEPROM,
Power Supply EEPROM,
Head-Diode Mismatch,
Prom Checksum,
Range Faults

EEPROM faults typically indicate memory corruption. Should any of these faults occur, check the following:

[] Press EXIT to clear the fault display. If the fault does not clear, a fault message is displayed on the main menu as well as the Fault Status menu.

[] Turn the power switch on the rear panel of the power supply off for approximately 10 seconds. Turn the power supply on.

If the fault persists, contact Coherent Service or an authorized service representative.

Checklist 12:
LBO Battery Fault

The LBO battery fault indicates that the backup battery, which protects the LBO crystal from AC power interruptions, is not charged to a minimum of 13 V. If this fault occurs, DO NOT remove AC Power from the laser without first running the LBO cool-down from the “LBO Settings” menu.

Should this fault occur, check the following:

[] Press EXIT to clear the fault display. If the fault does not clear, a fault message is displayed on the main menu and the Fault Status menu.

[] Turn the power switch on the rear panel of the power supply OFF for approximately 10 seconds. Turn the power supply ON. It is not necessary to cool the LBO crystal down if the power is turned off for only 10 seconds.

The CPU monitors the battery charge only when the system is initially powered up. Therefore, this fault appears only during the first few minutes after the AC power to the laser system is turned on. Disappearance of the fault message DOES NOT indicate that the battery has been restored to its full charge. Disappearance of the Low Battery Charge fault message only indicates that the CPU is no longer monitoring the battery charge. Contact Coherent Service or an authorized service representative to replace the battery.
Checklist 13:

Shutter State Mismatch Fault

The shutter state mismatch fault indicates a conflict between the shutter state as detected by the shutter monitor and the CPU. Should this fault occur, do the following:

- Press EXIT to clear the fault display. If the fault does not clear, a fault message is displayed on the main menu and the Fault Status menu.

- Turn the power switch on the rear panel of the power supply off for approximately 10 seconds. Turn the power supply on.

If the fault persists, contact Coherent Service or an authorized service representative.

Checklist 14:

Lost Modelock Fault

This fault indicates that the laser can no longer detect a modelocked pulse. If the system loses modelocking, check the following:

- Press EXIT to clear the fault display. If the fault does not clear, a fault message is displayed on the main menu and the Fault Status menu.

- Examine the pump and cavity PZT values in the SYSTEM INFORMATION menu. PZT values that are outside the range –80% to 80% indicate that the INITIALISE routine should be run (see Table 4-4 on page 4-11 for Chameleon sub-menus).

- Turn the keyswitch to Standby and attempt to restart the laser.

- Verify the Verdi pump laser is operating at the expected power.

- Verify the VPUF head is lasing at the expected power.

- Verify chiller temperature is 20°C.

If the fault persists, contact Coherent Service or an authorized service representative.

Checklist 15:

Ti:Sapphire Temperature Fault

The Ti:Sapphire crystal temperature is water-cooled. A high temperature may indicate a misalignment or a problem with the water cooling. If this fault occurs, check the following:

- Press EXIT to clear the fault display. If the fault does not clear, a fault message is displayed on the main menu and the Fault Status menu.

- Verify the chiller temperature is 20°C. If not, adjust the chiller temperature as necessary.
Checklist 16:
Pump and/or Cavity
PZT X, PZT Y Faults

PZT X and PZT Y faults occur when the PZT reaches either end of its range of motion, to maintain alignment of the Verdi pump beam into the VPUF head. If this fault occurs, check the following:

[] Press EXIT to clear the fault display. If the fault does not clear, a fault message is displayed on the main menu and the Fault Status menu.

[] Examine the pump and cavity PZT values in the SYSTEM INFORMATION menu. PZT values that are outside the range –80% to 80% indicate that the INITIALISE routine should be run (see Table 4-4 on page 4-11 for Chameleon sub-menus).

[] Turn the keyswitch to Standby and attempt to restart the laser.

[] Verify the Verdi pump laser is operating at the expected power.

[] Verify the VPUF head is lasing at the expected power.

[] Verify chiller temperature is 20°C.

If the fault persists, contact Coherent Service or an authorized service representative.

Checklist 17:
Cavity Humidity Fault

Cavity humidity fault occurs when the relative humidity is too high to ensure modelocking performance across the entire tuning range. If this fault occurs, check the following:

[] Press exit to clear the fault display. If the fault does not clear, a fault message is displayed on the main menu and the fault status menu.

[] Ensure that the MRU-X1 is switched on (see Appendix A: MRU X1).

[] Ensure that the air hose connections to the MRU-X1 are correctly fitted.

[] Ensure that the MRU-X1 desiccant filter or molecular sieve do no require replacement.

If the fault persists, contact Coherent Service or an authorized service representative.
Checklist 18:
Stepper Motor
Homing Error

The stepper motor homing error occurs when either the tuning modelock slit stepper motor fails to home. Should this fault occur check the following:

[] Press exit to clear the fault display. If the fault does not clear, a fault message is displayed on the main menu and the fault status menu.

[] Turn the system to standby for a few seconds using the keyswitch and then restart the system using the warm start procedure. See “Warm Start” on page 4-2.

[] Home the stepper motor using the appropriate RS-232 command.
 Fault code 51: send RS-232 command HM=1
 Fault code 57: send RS-232 command HMLIT=1

[] Turn the power supply in the rear of the power supply off for approximately 10 seconds. Turn the power supply on.

[] Confirm that the laser is operating with specified output and wavelength and that the system is tuning correctly.

If the fault persists, contact Coherent Service or an authorized service representative.

FAP-I Replacement

Refer to the troubleshooting charts prior to replacing the FAP-I. Contact Coherent technical support or a local service representative to assist in determining the need for FAP-I replacement. It is strongly recommended that FAP-I replacement is undertaken by a Coherent service engineer. Should the customer carry out the replacement, the following procedure should be followed carefully.

Preliminary Steps and Data

1. Perform the procedure “Complete Shut-down” on page 4-4. The associated cool-down cycle takes approximately 45 minutes. The front panel display then indicates when the cool-down cycle is complete.

Don't turn the power switch off or disconnect the AC power input until the cool-down cycle is complete.

2. When the LBO cool-down cycle is complete, turn the power switch on the power supply rear panel off.
Do not disconnect the power cord from facility power. The power supply chassis must be grounded either by the power cord or a separate ground to avoid ESD.

3. Remove the top cover of the power supply.

The FAP-I can be damaged by electro-static discharge (ESD). To avoid ESD, a personal grounding strap must be used at all times.

FAP-I Handling Precautions

1. The FAP-I can be damaged by improper handling. To avoid ESD, a personal grounding strap must be used at all times. Follow the instructions that accompany the personal grounding strap.

Figure 6-1. Location of FAP-I Assemblies

2. A shorting clip (Figure 6-3) must be installed between the anode and cathode terminals to avoid ESD before the leads are disconnected from the terminals.
3. When disconnecting the fiber optic cable from the FAP-I assembly, a cap (Figure 6-3) must be installed over both the FAP-I optical emission port and the end of the fiber optic cable to protect them from accidental damage or contamination.

Figure 6-2. Fiber Optic Cap and FAP-I Anode/Cathode Shorting Clip

The end of the fiber optic cable constitutes an optical surface. Do not allow the end of the fiber optic cable to contact any surface, including the fingers.

A contaminated optical surface can cause system damage. To minimize exposure to the environment, the blue protective plastic cap should be installed whenever the fiber is disconnected.

When removing or installing the fiber optic cable, do not allow the fiber optic cable to rotate while loosening the ferrule connector.
1. When removing or installing a fiber optic cable, do not allow the fiber optic cable to rotate while loosening the ferrule connector (Figure 6-3).

2. The end of the fiber optic cable constitutes an optical surface. Do not allow the end of the fiber optic cable to contact any surface, including the fingers. To minimize exposure to the environment, the protective plastic cap should be left in place until a connection is made and immediately installed over the fiber end when a connection is disassembled.

3. Do not allow the end of the fiber optic cable to contact the diode (FAP-I) assembly or any other surface including the fingers. Failure to do so can damage the optical surface.

Inspect the fiber optical surface to verify there is a need to clean prior to performing the cleaning procedure.

4. Do not install a contaminated or damaged fiber optic cable to the FAP-I. Doing so causes a failure of the laser system. Contamination or damage can be difficult to detect. A magnifier is helpful during examination.
Do not use acetone as a cleaning solvent on the fiber optical surfaces. It dissolves the matrix that supports the fiber and permanently destroys the optical transport fiber.

5. The end of the fiber optic cable should be cleaned using the drop and drag procedure located in the section titled “Fiber Optic Cleaning” on page 6-21. Do not use any other procedure or method. If scratches or other damage is noted, the FAP-I replacement must be terminated and the plastic cap reinstalled. Contact Coherent or an authorized local representative.

6. Excessively tight fiber umbilical bends (less than a 5-inch radius) can cause permanent damage.

FAP-I Removal

1. Install shorting clip (Figure 6-2) between anode and cathode of FAP-I assembly to be removed.

2. Disconnect the anode and cathode connectors (Figure 6-3 and Figure 6-4).

1. Anode Connector
2. Case/Anode Ground Jumper
3. Cathode Connector
4. Fiber Optic Connector
5. Personality Module, Thermistors, Head Hours Connector
6. TEC Coolers Inputs/Outputs Connector

Figure 6-4. FAP-I Assembly Interface
3. Disconnect the Case/Anode ground jumper from the FAP-I assembly.

Wear finger cots (supplied with the replacement FAP-I) or latex gloves while handling the fiber optic cable.

4. Disconnect the fiber optic cable as follows:
 a. While firmly holding the fiber optic cable, loosen the ferrule connector securing the fiber optic cable to the FAP-I. It may be necessary to use a small wrench to loosen the connector.
 b. Note that the ferrule is cut out, as shown in Figure 6-3. Carefully extract the fiber optic cable from the FAP-I and remove the ferrule. Immediately install the two plastic protective caps, one over the end of the fiber cable and the second over the FAP-I optical output port (Figure 6-3).

5. Disconnect the personality module and TEC connectors from the FAP-I assemblies by pulling back on the outer sleeve and then unplugging the connector.

6. Remove eight screws securing the FAP-I to the heat sink (two on each side).

Due to the thermal grease on the bottom of the FAP-I assembly, it may be necessary to work the old assembly loose by rotating (wiggling) it back and forth around its center.

6. Remove the FAP-I and clean the thermal grease from the FAP-I and the mounting surface (spectroscopic-grade methanol or isopropyl alcohol works well for this).

FAP-I Installation

1. Remove the new FAP-I from the shipping container. Leave the shorting clip and protective plastic cap in place to avoid possible ESD and contamination damage, respectively.

2. Place masking tape over the edges of the FAP-I baseplate as illustrated in Figure 6-5.

3. Using a clean metal, plastic, or wooden applicator, apply an even coating of thermal grease to the bottom of the FAP-I. The thickness of the grease film should be less than the thickness of the masking tape.
4. Position the FAP-I assembly on the heat sink and reattach the Case/Anode ground jumper to the FAP-I baseplate.

5. Secure the FAP-I to the heat sink using the remaining seven mounting screws. Remove any excess thermal grease from around the assembly.

6. Re-connect the anode and cathode leads. Be sure to reconnect the case/anode ground jumper when connecting the anode lead. Remove the anode/cathode-shorting clip.

7. Re-connect the Personality module and TEC connectors and reconnect the fiber optic cable.

8. If disconnected, connect the power supply power cord to facility power. If a ground wire was used, remove it.

9. Using a fiber scope, inspect the fibers and clean them if necessary (see Fiber Optic Cleaning later in this chapter).

10. Re-connect the fiber optic cables to their respective FAP-I. Tighten the ferrule finger tight (to 4" lb., if a torque wrench is used).

11. Replace the power supply cover and perform the cold start turn-on procedures.

12. When all the temperature servos have stabilized and locked, verify that the laser operates reliably at full power. Should there be any operational problems; contact Coherent Service at 1-800-367-7890, or your authorized Coherent representative.

The FAP-I replacement procedure is complete.
Fiber Optic Cleaning

Before performing the cleaning procedure, inspect the fiber optic surface with a fiber scope to determine the extent to which the fiber might be damaged or contaminated.

Only perform the cleaning procedure if the fiber optic surface shows imperfections, otherwise the procedure may introduce dust, dirt or potentially induce damage to the fiber optic.

Necessary Equipment

The following materials are required to perform this procedure:

- Cleanroom-quality swabs made by ITW Texwipe part number TX743B
- Fresh spectroscopic-grade Methanol
- Fiber microscope (fiber scope), 100X total magnification ¹
- Non-powdered, non-coated Latex (or equivalent) gloves

Important: Do not use Acetone!

Fiberscope

A recommended cost-effective fiber scope is the Westover FM-C Series Field Microscope and SMA adapter manufactured by Coherent part # 1110975. See Figure 6-6.² The adapter has no

1. Customers who have purchased 200x microscopes may use those instead.
2. For Noyes microscopes, a part number 1111484 adapter must be used.

Figure 6-6. Fiberscope with 20X Eyepiece
threads. If it is necessary to attach the fiber firmly to the microscope during inspection, use the adapter part number 1134846.

Inspect the Fiber

Always wear latex gloves (or the equivalent) while performing any of the following procedures. Dust, condensation and oils from the hand can be transferred to the optical surface, which can lead to damage. If contaminants are visible on the outer wall of the nose, clean this surface first. See “Fiber Cleaning” on page 6-23.

13. Tilt the fiber as shown in Figure 6-7 and gently slide it into the adapter.

14. Inspect the fiber for defects: spots on coating, scratches, burns, contamination. Reference the size of the defect to the size of the fiber's cladding. Defects are counted and estimated per fiber quadrant. Divide the fiber into quadrants in such a way so that the maximal number of defects will fall within the same quadrant.

If the fiber surface complies with the acceptable guidelines as illustrated in “Fiber Evaluation Criteria” on page 6-25 section, immediately install the fiber optic into the FAP.
Fiber Cleaning

If contaminants have been noticed on the outer wall of the fiber nose, perform the following to cleaning process:

1. Use methanol and a swab and clean with movements starting from the tip of the fiber and ending at the shoulder.
2. Halfway through the perimeter turn the swab around to use it’s other flat side.
3. Repeat if necessary.
4. For fibers which have a built-in nut move the swab around the perimeter of the fiber tip.

If contamination has been noticed on the fiber surface, perform the following to clean:

1. Place two to three drops of Methanol on the swab.
2. Vigorously shake off excess Methanol from the swab.

Excess Methanol on the fibers can cause potentially catastrophic damage to the fiber optic and the FAP.
Only the synthetic cloth should make contact with the fiber optic surface. Do not allow the plastic applicator to touch the fiber surface.

3. Holding the fiber surface vertically drag the swab once across the fiber optic surface in a direction away from yourself, See Figure 6-9. **Do not** move the swab back and forth. **Do not** re-use the swab. Use a new, clean swab each time for the swipe.

![Figure 6-9. Placement of the Swab on the Fiber Optic Surface](image)

4. Re-check the fiber using the fiber scope.
 - If the fiber surface complies with the acceptable guidelines as illustrated in “Fiber Evaluation Criteria” on page 6-25 section, immediately re-install the fiber optic into the FAP.
 - If imperfections remain, repeat the procedure using a new swab.
 - If imperfections still remain, compare the image in the fiber scope with Table 6-2 to determine whether the fiber optic must be replaced.
Fiber Evaluation Criteria

Figure 6-10 shows an image of a fiber optic surface as viewed through a fiber scope. It shows the convention of quadrants used for evaluation and an example of how to estimate the size of a defect when compared to the size of the cladding.

Figure 6-11 shows images as viewed through a fiber scope of different types of damage. Note that the views shown are the optical surface.

Figure 6-10. Fiber Description
Figure 6-11. Examples of Fiber Damage
Table 6-2. Evaluation Criteria

<table>
<thead>
<tr>
<th></th>
<th>CORE:</th>
<th>CLADDING:</th>
<th>NOSE END (METAL PART):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cracks or coating delamination</td>
<td>none allowed</td>
<td>Allowed in outer 50%</td>
<td>40 microns</td>
</tr>
<tr>
<td>Absorptive defects (dark in appearance)</td>
<td>< 5 microns</td>
<td>< 10 microns</td>
<td>40 microns</td>
</tr>
<tr>
<td>Transmissive defects</td>
<td>< 20 microns</td>
<td>< 20 microns</td>
<td></td>
</tr>
<tr>
<td>Maximum number of defects 10 - 20 microns per quadrant</td>
<td>1</td>
<td>4</td>
<td>40 microns</td>
</tr>
<tr>
<td>Maximum number of defects smaller than 10 microns per quadrant</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Maximal number of defects allowed for the core</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

These criteria are applicable for new fibers and are listed here to provide general evaluation guidelines. Fibers which have been in use for some time can have defects in excess of these criteria. If unsure how to proceed, contact Coherent Service 1-800-367-7890 (408-764-4557 outside the U.S.) if further guidance is needed.
FAP-I Temperature Optimization

The Verdi V-18 software has an on-demand routine that performs both diode optimizations automatically. By varying the FAP-I temperature, the software determines the optimum diode current. The FAP-I optimization should be completed when diode currents are greater than 10% of their baseline values and after the LBO optimization has been completed.

Note that the shutter is active during the LBO optimization. Coherent recommends the shutter remains closed throughout the process since the laser power changes while the routine executes.

To find optimum diode temperatures, set the output power level as close to operating power as possible. The FAP-I optimization does not run if the laser power level is less than 80% of the specified maximum power. Once the routine is complete, the system displays “Diodes Optimized” and returns the laser to light regulation mode at the preset power level.

Performing the Optimization

1. Turn the Verdi on at the maximum power level.
2. Record the Diode temperature setpoints.
3. Scroll to the Diode Optimization menu from the Base Menu and select the optimization routine. The FAP-I optimization may require several hours to complete.
4. Once the routine is complete, record the diode current as the new baseline value in the system weekly logbook.

Fuse Replacement

Criteria for Replacement

Defective fuse per Checklist 1.

Do not turn the power switch off or disconnect the AC power input until the cool-down cycle is complete.

1. Perform the procedure “Complete Shut-down” on page 4-4. The associated cool-down cycle takes approximately 45 minutes. The front panel display then indicates when the cool-down cycle is complete.
2. Turn the power switch on the power supply rear panel off and disconnect the power cord from facility power.

A fuse that fails repeatedly is an indication of a more serious problem. In this case, the system should be returned to the factory. If the laser system or components must be returned directly to Coherent, a return material authorization (RMA) number is required. Contact Coherent or an authorized representative.

3. The location of the fuse is shown on Figure 4-2. Insert a small screwdriver and twist to remove the fuse holder.

4. Replace the fuse with properly rated time-delay fuse and reinstall the fuse holder. Connect the power supply power cord to facility power.

5. Perform the procedure “Complete Shut-down” on page 4-4.

Verification of Successful Installation

6. The AC ON indicator on the power supply front panel then lights.

Battery Replacement

The battery in the power supply is not user-replaceable. If Fault #30 is indicated, follow Checklist 12: LBO Battery Fault. If the fault is not resolved by following this procedure, contact Coherent or an authorized representative for further instruction.

Cleaning the Air Filter

The air filter is located on the power supply front panel as shown on Figure 4-2.

Criteria for Cleaning

Visual inspection on a periodic basis; inspect more frequently if the operating environment is less than ideal.

Clean the air filter when the laser is turned off.

Removal

Do not turn off the power switch or disconnect the AC power input until the cool down cycle is complete.

Do not remove the air filter while the fan is running. The fan is operational when the keyswitch is in the STANDBY position.

1. Perform the procedure “Complete Shut-down” on page 4-4. The associated cool-down cycle takes approximately 45 minutes. The front panel display then indicates when the cool-down cycle is complete.

2. Turn the power switch on the power supply rear panel off and disconnect the power cord from facility power.

Air Filter Removal and Cleaning Procedure

3. Loosen the two retaining nuts (Figure 4-2) and remove the air filter.

4. Clean the air filter by rinsing with water and dry with a blower.

5. Re-install the air filter and perform the procedure “Cold Start” on page 4-1.

Verification of Cleaning

SECTION SEVEN: THEORY OF OPERATION

Chameleon Ultra Laser Head

The Chameleon Ultra and Chameleon Vision laser head (Figure 1-3) consists of a Verdi laser head and a sealed Verdi-Pumped Ultra-Fast (VPUF) laser head. The 532 nm output from the Verdi pumps the VPUF head.

Optimum pump beam (532 nm) alignment is provided by an active PowerTrack mirror. The position of the PowerTrack mirror is optimized by two PZTs. The PZTs operate in a feedback loop to optimize the alignment of the Verdi pump beam and therefore, the power emitted by the VPUF head.

VPUF Laser Head

The following is a very brief explanation of the operation of a laser.

A laser is an optical oscillator that creates a very highly directed beam of light at a precise wavelength or frequency. There are three important components of all lasers:

- High reflector
- Gain medium
- Output coupler/partial reflector

The region of space between the high reflector and the output coupler is referred to as the laser cavity.

If the atoms in the gain medium are properly “prepared”, light passing through the medium will be intensified, or amplified. The high reflector at one end of the laser and the output coupler, which as a partial reflector, causes the amplified light to be returned to the gain medium for further amplification. Only light traveling strictly perpendicular to the high reflector and output coupler will make many passes through the gain medium without zigzagging off the mirrors and will therefore be amplified significantly. This strong “preferential treatment” of light moving in a precise direction is what gives the laser its highly directed beam.

The output of the laser is simply a sampling of the light circulating in the cavity provided by the output coupler. The output coupler reflects most of the light incident on it, but allows a fraction to be transmitted forming the output of the laser.
The Gain Medium

Light is absorbed rather than amplified in most materials. The atomic explanation of absorption and amplification are similar; the difference being in the initial state of the atom.

Atoms are normally in their low-energy state and pick up energy from incident light, thus absorbing the light. Upon absorbing this light, the atom is in an energetic state and can, when stimulated properly, fall to its original state — and upon doing so, emit light.

Atoms in their energetic or excited state can be stimulated to emit light by light itself. If, moreover, the stimulating light and the stimulated light are identical in wavelength, more light of that wavelength leaves the region of the atom than arrived there. Therefore the light is “amplified”.

Preparing the Atoms for Amplification — Pumping

Some means are required to raise the atoms to their high energy or excited state, because at normal temperatures most are in a lower energy state and will absorb rather than emit light. The process is referred to as pumping. There are many methods of pumping and different methods are appropriate for different atoms.

In the case of the Ti:Sapphire laser, another laser is required as the pump laser to excite the titanium. Each atom requires intense light and only a laser can provide this highly focused and directed light.

Longitudinal Modes

Only certain wavelengths will be amplified depending on the details of the amplifying medium and the mirrors. In general, wavelengths may be restricted further by optical filters or other devices. In principle, the Ti:Sapphire gain medium in the Chameleon Ultra and Chameleon Vision lasers will amplify from 680 nm to 1100 nm. The laser mirrors restrict the possible wavelengths to ~ 350 nm. The specific wavelengths that can oscillate are further restricted due to a resonance condition similar to the vibrating frequencies of a string.

The requirement is that each lasing wavelength must satisfy the condition that an integral number of half wavelengths must “fit” precisely between the mirrors. Because the integer is not specified, there can be many wavelengths that satisfy this criterion. An adjustable tuning element in the Chameleon Ultra and Chameleon Vision lasers is then used to select the central wavelength that is amplified.

Each of the possible wavelengths is known as a “longitudinal mode”.
The light is contained between the mirrors within a very well-defined volume, which is much narrower than the physical diameter of the mirrors. This distribution is known as the “transverse mode” of the laser.

The diameter of the beam anywhere within the laser cavity depends critically on the distance between the mirrors and in the case of Chameleon Ultra and Chameleon Vision lasers, the intensity of the light. This is important in understanding the principle upon which these lasers operate.

Again, the following explanation of modelocking is presented in its simplest form, but sufficient for the understanding of the operation of the Chameleon Ultra and Chameleon Vision lasers.

Within the cavity of a modelocked laser, a single short pulse of light bounces back and forth between the mirrors.

At each bounce from the output coupler, a small portion of the pulse escapes to form the output of the laser. The time between pulses is equal to the time it takes for light to make one round trip from the output coupler to high reflector at the other end of the cavity back to the output coupler. In the case of Chameleon Ultra and Chameleon Vision lasers, this time is approximately 11.1 ns.

The inverse of this time gives the number of pulses per second, commonly referred to as the repetition rate, rep. rate, or sometimes as the “frequency”. For the Chameleon Ultra and Chameleon Vision, the rep. rate (or frequency) is 80 MHz.

Once a pulse is formed within the cavity, most atoms that were in their excited state (prepared to emit light), have been stimulated to do so by the passage of the pulse through the gain medium. For a period of time then after passage, there are insufficient atoms in the excited state, to form and amplify another pulse. This means that only a single pulse is formed at a time and the output consists of a sample of this one pulse, as it periodically arrives at the output coupler.
Formation of the Pulse

Active Modelocking

Many active techniques for creating a short optical pulse have been developed. All act upon the laser in basically the same way, however. In order to initiate the pulse, some sort of optical shutter, or “modulator”, is opened, closed and opened again at precisely the correct rate to allow a pulse of light to pass through the shutter as it travels back and forth between the high reflector and output coupler. Only light that arrives at the shutter at precisely the correct time to pass through without being blocked will be amplified. Because the shutter is closed at all other times, a second pulse cannot be formed.

It is not difficult to see that the timing of the shutter is extremely important and must be precisely equal to the time interval between successive bounces of the pulse to be amplified. In other words, the modulator frequency must be precisely equal to the repetition rate (pulse frequency). If this technique must be used to form the modelocked pulse, great care and ingenuity must be employed to keep these two frequencies identical. Since the time between pulses depends on the length of the cavity, any change in the length of the cavity must be accompanied by an accurate readjustment of the modulator frequency. Alternatively, the cavity length can be regulated so the repetition rate always matches the modulator frequency. There are many very practical commercial systems (e.g., YAG and YLF lasers) that utilize this type of modelocking successfully through ingenuity, precision components and competent engineering, despite the complexity of design.
A shutter or modulator in which timing is accurately controlled externally is not necessary in some modelocked systems. If some material or mechanism could be used that automatically opens to allow the pulses through but is closed otherwise, a self-adjusting modulator could be constructed. In other words, the light pulse would open its own shutter when it arrives, rather than depending on it being open upon arrival. Therefore, if the pulse arrived early or late, the shutter would still open, allow the pulse to pass through and then close. This method is known as “passive modelocking”.

There are indeed materials that behave in this manner. This is possible because the instantaneous intensity of the pulses are extremely high, compared to the intensity when the laser is operating unpulsed or continuously (CW operation). Organic dyes fit this description, which are normally opaque but become transparent to light of very high intensity. This intensity dependent transmission is referred to as saturable absorption.

Unfortunately, saturable absorbers are commonly exotic dyes with properties that are very wavelength-dependent. They are often in liquid form and must either be refreshed frequently or flowing. In addition, the dye concentration must be adjusted as the laser power changes.
Coherent’s saturable absorber system does not suffer from the limitations mentioned above. It uses no dyes or liquids, does not have to be renewed, operates independently of wavelength and is adjusted for various powers using a simple mechanical control.

The Chameleon Ultra and Chameleon Vision laser cavity has been designed such that the beam diameter within the cavity changes by a small amount as the intensity of the light changes. More specifically, the beam diameter at certain locations within the cavity is large when the laser is operating in CW mode, but becomes smaller when the laser is producing high-intensity modelocked pulses.

A simple slot or “slit” is now placed at the appropriate location and its width is adjusted so the large-diameter laser beam associated with continuous operation will be interrupted at its edges. A high-intensity pulse, however, passes uninterrupted through the slit, because the beam is smaller. Refer to Figure 7-1.

Figure 7-1. Chameleon Ultra and Chameleon Vision Saturable Absorber System
The modelocking device in Chameleon Ultra and Chameleon Vision lasers is a saturable absorber system, because it consists of two parts:

- A material that decreases the laser beam size in the presence of high-intensity pulses
- The slit that introduces losses for large beams

The properties of light passing through any material depend on a property referred to as the “index of refraction”, or \(n \); the higher \(n \), the lower the velocity of light. If the velocity of light is different for different parts of the light beam, the beam will bend or otherwise be re-shaped, since different parts of the beam are traveling at different speeds. This is known as “refraction”.

A common refractive element is the lens (e.g., a biconvex lens), which is thicker in the middle than at the edges, so the center of the beam is slowed down more than the edges. This causes the light to bend toward the center. In the case of the lens, the index is the same everywhere, but still, since there is more glass in the middle than the edges, the edges are slowed down less. A lens can also be formed by making the index of refraction at the center of the material larger than the index at the edges. This will also bend light and is known as a “gradient index lens”.

The most common way to change the index of a material is to change its chemical composition. However, in Chameleon Ultra and Chameleon Vision lasers, the index is changed by the light itself. At sufficiently high intensity, the electric fields associated with the light can actually distort the atoms of the material and alter its index. This effect is known as the “optical Kerr effect”. The beam is less intense at its edges as compared to the center; the index at the center will be different – and a gradient index lens is formed. Because it is the optical Kerr effect that alters the index, the lens thus formed is referred to as a “Kerr lens”.

The Kerr lens is formed only when the intensity of the light is extremely high. The instantaneous intensity of modelocked light pulses are sufficient to form this lens, but the weak intensity of the laser, which is operating CW, is not; therefore, the lens is formed only upon the arrival of a modelocked pulse. It is this lens that narrows the laser beam. A mechanism has now been created that narrows the beam only for modelocked pulses. The addition of a slit to allow only narrow beams to pass unattenuated now forms the complete saturable absorber system, which provides a real driving force for modelocking.
Origin of the Term “Modelocked”

It may not be obvious why this pulsed output operation is referred to as “modelocked”. The explanation is in the output of the laser.

As mentioned in the description of the laser itself, the laser can operate at a number of wavelengths, which satisfy the condition that an integral number of half wavelengths will “fit” between the high reflector and output coupler. Any one of the wavelengths that satisfy this condition is called a “longitudinal mode”.

When several modes are lasing simultaneously, they add to each other, so, on a random basis, there will be instants at which the light from all the modes will add to create an intense sum. Other times this sum will be less intense, depending on the relative timing or phase of each mode. It can be shown that the larger the number of modes, the higher the instantaneous intensity will be. Figure 7-2 shows the intensity of light with varying number of modes, randomly-phased or timed.

If the phase between each mode is adjusted non-randomly and held constant, the peak powers become much larger and the random spiking between these pulses diminishes. This is known as locking the modes together—modelocking.

Once the modes are locked together, the larger the number of modes locked together, the higher the pulse intensity and the narrower the pulse. Interestingly, the frequency of the pulses is precisely equal to the frequency separation of adjacent longitudinal modes.
Figure 7-2. Intensity of Light with Varying Number of Modes
The Starting Mechanism

Normally, the laser will operate in the CW mode with minor power fluctuations, none of which cause powers that are sufficiently high to cause a Kerr lens to form, not even for an instant. Therefore, some mechanism must be introduced to create a sufficiently high peak power to “open” the saturable absorber system. By changing the cavity length at the proper speed, very high-power fluctuations can be induced. Once the instantaneous power in one of these fluctuations becomes high enough, a slight Kerr lens is formed; the beam is narrowed and can pass unattenuated through the slit. This pulse is amplified and becomes the dominant pulse that will form the mode-locked output.

Normally, in a laser such as Ti:Sapphire, only one or two longitudinal modes operate simultaneously. This is due to the fact that all atoms within the lasing medium are considered to be equivalent and are capable of emitting light over a range of frequencies and will emit at the same frequency as the stimulating light. Therefore, the earliest light to reach high intensity through the amplification process will establish the frequency for subsequent light. No atoms will remain in their upper state to amplify light at another frequency. In reality, two modes can operate simultaneously due to a phenomenon known as “spatial hole burning” that will not be covered here.

The random fluctuations caused by only two modes do not cause very high instantaneous powers. A prerequisite for high intensity fluctuations is that the laser be encouraged to simultaneously operate with as many longitudinal modes as possible.

Of all the longitudinal modes that can lase, a few are more likely than others. This is due to the fact that any wavelength-selecting element will cause more losses on either side of the selected wavelength. As the wavelength selector is changed, some modes are discouraged and others are encouraged. Alternately, the modes themselves can be shifted in wavelength by changing the cavity length, so a different set of wavelengths satisfy the “integral half waves between reflectors” criterion. If the cavity length is changed rapidly enough, the freshly discouraged modes (previously oscillating modes) will die out, leaving atoms available for the new modes. There will be a period during which both can lase simultaneously. We have therefore created a transient condition under which the output of the laser contains more longitudinal modes than normally possible.

Once a larger number of modes are lasing, peak intensities are produced to initiate Kerr lens formation and the modelocking process begins.
It is important to mention that once modelocking starts, it will continue without the need of the starting mechanism. The rapid length variation can be halted.

In Chameleon Ultra and Chameleon Vision lasers, the length of the cavity is changed slightly by vibrating an intracavity mirror.

Transmission of Ultrashort Pulses of Light Through Glass

Group Velocity Dispersion

The wavelength of an ultrashort pulse of light cannot be determined precisely because it is formed by the sum of a distribution of wavelengths on either side of the center wavelength. The width of the distribution is inversely proportional to the length of the pulse. Moreover, in order to produce a short pulse of light from the distribution, the timing or phase between each component wavelength must be precisely correct, or the pulse will not be as short as it could be.

An ultrashort pulse will become longer after it has passed through glass. This is because in all normal materials, the index of refraction and therefore the speed of light depends nonlinearly on the wavelength.

Figure 7-3 shows a hypothetical dispersion curve, i.e., a graph of refractive index \(n(\lambda) \) versus wavelength \(\lambda \) with a shape typical of many common materials that are transparent in the optical spectrum. The shape is typical in the sense that the index decreases monotonically with increasing wavelength, while maintaining a gradual upward curvature. This is often referred to as “normal dispersion”, whereas a material with a downward curvature is referred to as having “anomalous dispersion”.

\[
\frac{dn(\lambda)}{d\lambda} \quad \text{At a given wavelength, the refractive index } n(\lambda) \text{ determines the phase velocity or the velocity of a monochromatic wave.}
\]

\[
\frac{d^2 n(\lambda)}{d\lambda^2} \quad \text{The slope of the refractive index curve (see left) determines the group velocity and thus defines the velocity of a wave packet (short light pulse) with a central wavelength } \lambda.\]

\[
\frac{dn(\lambda)}{d\lambda} \quad \text{The second derivative of the curve (see left), determines the GVD, which governs the rate at which the frequency components of a wave packet change their relative phases.}\]
GVD causes temporal reshaping of wave packets. This can be the shape broadening or a compressing, depending upon the initial conditions (chirp) of the wave packet spectrum. The term “chirp” means that the frequency of the packet is changing with time (as in the chirping of a bird).

A pulse is said to be “positively chirped” if its instantaneous frequency increases from leading edge to trailing edge, as in Figure 7-4. This is the type of chirp that normally will be imparted to a pulse after traversing “normal” materials with an upward curvature as shown in Figure 7-3. Its blue spectral components will be retarded with respect to the red, creating a systematic variation of phase with respect to wavelength.

Similarly, a pulse is said to be negatively chirped if its red spectral components have been retarded with respect to the blue as seen in Figure 7-4.

The curvature and hence GVD is determined by the 2nd derivative of the dispersion relation.

$$\frac{d^2n(\lambda)}{d\lambda^2} \propto \text{"Group Velocity Dispersion"}$$

Figure 7-3. Group Velocity Dispersion Derivative
Self Phase Modulation

In addition to the phenomena already described, pulses in ultrafast lasers are also affected by self-phase modulation (SPM). Due to the optical Kerr effect, intense light pulses propagating through dense media create a local index of refraction that is dependent on the light field intensity. Therefore, the leading and trailing edges of the pulse will cause less change in the index than the center where the intensity is highest. This will subsequently cause parts of the pulse to move faster, thus altering the pulse shape.

Frequency components propagating through the material are thus phase-shifted differently, depending upon where they occur in the pulse. This phenomenon actually generates new frequencies (or eliminates old ones depending upon the initial conditions). These frequency components are inherently chirped and can broaden the pulse unless the chirp is compensated. It can be shown that chirp which results from SPM has the same sign (positive) of the chirp introduced through normal material GVD.

Figure 7-4. Group Velocity Dispersion
Dispersion Compensation

Because of self-phase modulation and the GVD from the many dispersive elements within the laser cavity, some method must be employed to allow the slow frequencies or wavelengths to catch up with the faster ones. Each time it traverses the cavity, the circulating pulse receives a slight chirp from the dispersive elements it encounters. Without compensation, the cumulative effect of even a very small chirp per round-trip would create broadening and pulse substructure. We thus require an element or system of elements that has negative GVD; that is, the relationship between wavelength and speed or index must be the reverse of what it is in a normal material. In principle, negative chirps could be introduced by propagating the pulse through a material at a wavelength in which the curvature of the index curve goes downward—but in practice, this is not very practical. To accomplish this with some variability in the magnitude of the desired compensation, some type of special optical system must be constructed.

In the previous section on group velocity dispersion, the concept of GVD was introduced in the context of index of refraction. The existence of a finite second derivative of the index with respect to the wavelength was required in order to create GVD. In fact, this description does not apply only to simple material dispersion curves, but also can be generalized to any optical system by realizing that a more general description of GVD requires the existence of a finite second derivative of the optical path length with respect to wavelength.

For a given wavelength and a given optical system, one can express the phase evolution of the light wave traveling through the system by taking into account all of the effects that occur along the optical path, including refraction at surfaces.

A path length curve, analogous to that shown in Figure 7-3, can be constructed for any complex optical structure having wavelength dependent beam paths. GVD can therefore be regarded as a property of an optical construction.

An example of a simple scheme for compensating GVD consists of a pair of prisms separated by a distance oriented in a specific way with respect to each other. It can easily be shown that the net GVD of this prism pair can be made negative by proper choice of prism material (and its index properties) and the distance between the prisms.

This GVD compensation scheme operates as shown in Figure 7-5.

1. A pulse is formed and chirped by self-phase modulation in the Ti:Sapphire crystal and by GVD in the various intracavity optical components in the laser.
2. The chirped pulse enters prism 1.

3. Since prisms bend or refract different wavelengths into different angles, the beam spreads as it heads for the second prism.

4. The blue components are bent more severely than the red ones, thus creating the possibility of wavelength dependent path lengths for the various rays.

As mentioned above, this system behaves exactly opposite of most materials. The GVD of this system is said to be negative, since the blue part of the pulse travels through the system faster than the red.

The magnitude of the GVD compensation can be easily controlled over a range by prism glass path adjustment (see “Changing GVD”). The range is sufficient to allow the “net cavity GVD” to be tuned through zero.

![Diagram of GVD Compensation](image)

Figure 7-5. One Method of GVD Compensation

Changing GVD

The total round trip chirp of the system is the sum of the chirps arising from SPM, positive material GVD and negative GVD of the compensator. A simple way to adjust the GVD component of the chirp is to change the amount of glass within the cavity.

Translating one of the prisms in the compensator is a very convenient way of inserting more or less glass. Thus the proper GVD can be adjusted very simply. The Chameleon Vision provides a wide range of negative chirp to compensate for downstream optic elements, e.g. microscope objectives.
The Formation of Final Pulse Width

In practice, the pulse-forming mechanism is dynamic in nature. Although the optical materials within the cavity define the total dispersion within the cavity, self phase modulation depends on the intensity of the pulse. As the pulse gets shorter, its intensity becomes higher, since all of the energy in the long pulse is now emitted over a shorter interval. There is therefore more self phase modulation, and therefore more broadening.

Finally, the pulse reaches a stable width and pulse amplitude. This process of establishing an equilibrium pulse, which upon one trip through the cavity remains unchanged, is related to a nonlinear pulse formation process called “Soliton-formation”. The periodically reforming wave is referred to as a Soliton.

Soliton-like pulse formation has many attractive features. First, if the pulse for some reason becomes more intense, the increased self-phase modulation will cause the pulse to broaden, distributing the pulse energy over a longer period of time and thus reducing the pulse intensity. The laser is therefore self-regulating. The output is extremely stable.

Propagation of Ultrashort Pulses Through Optical Materials

Because ultrashort pulses broaden considerably when passing through any glass, it is important that this be taken into account in any experimental arrangement. Figure 7-6 shows the effect of several common glasses on the pulsewidth of a 100 fs pulse. Fused silica and BK7 are relatively benign, whereas a dense glass such as SF10 should certainly be avoided.

Figure 7-6. Comparison of Pulse Broadening in Fused Silica, BK7, and SF10 for 100-fs Pulse
PowerTrack

The PowerTrack function actively maintains optimum Verdi pump beam alignment into the VPUF cavity and optimum resonator alignment. This serves to minimize fluctuations in the ultrafast output power.

Piezo-Electric Transducer-driven levers alter the tilt and therefore the direction of the output of the PowerTrack mirror, as shown in Figure 1-3. In STANDBY mode, there is no voltage provided to the levers. Once the system is keyed to the “Laser On” position, the PZT controller provides voltage to these levers and carries out a rapid scan of the mirror in the X and Y directions (large changes in PZT voltage and hence pump beam position). This occurs first with the pump and then the intracavity PowerTrack mirror.

Scanning can be observed as large changes in the PZTx and PZTy voltages in the PZT Control submenu. Once a preset threshold level of continuous wave (CW) lasing is achieved, the raster scan is switched to a smaller amplitude Dither Scan (smaller changes in PZT voltage and hence pump beam position). The Dither scan is centered about the Raster Scan voltages found to achieve the threshold level of CW lasing. System electronics then correlate increases in power with changes in PZT voltage. This, in turn, allows the Dither Scan to fine tune the PZT voltage in the direction needed for optimum alignment.

Once the pump mirror alignment has been optimized in this way, the pump PowerTrack position is held and the intracavity mirror position is then optimized using the procedure just described.

Autocorrelation

Autocorrelation is a commonly used technique for measuring the duration of ultrafast pulses. A real-time autocorrelator is a useful pulse-width measurement tool for an ultrafast laser like the Chameleon Ultra or Chameleon Vision. A range of autocorrelator models are available from Coherent.
Optical Schematic
Overview

The optical schematic of a typical scanning autocorrelator is shown in Figure 7-7. The laser beam enters the input port and strikes the beam splitter, forming two beams designated “fixed” and “variable”. The fixed beam path is defined by mirrors M1 through M3 and has a total distance D_F. The variable beam path includes mirror M4 and a moving mirror assembly that creates a time dependent beam distance $D_V(t)$.

The two beams are parallel but slightly separated when they reach the lens, which refracts them along mutually converging paths that cross in the second harmonic crystal. An output second harmonic beam (at twice the laser frequency) appears after the crystal, travelling in a direction that bisects the angle between the two input beams. This beam contains the autocorrelation signal and is detected by the photomultiplier.
Figure 7-7. Typical Autocorrelator Optical Schematic Diagram
The Concept Of Autocorrelation

When a single pulse with envelope function \(E(t) \) enters the autocorrelator, it is split by the beamsplitter into two identical copies. The one which follows the fixed path requires a time interval of \(\frac{D_F}{c} \) to reach the lens, whereas the one that follows the variable path requires \(\frac{D_V(t)}{c} \).

\(E(t) \) has been converted to a signal of the form:

\[
E\left(t - \frac{D_F}{c}\right) + E\left(t - \frac{D_V(t)}{c}\right) = E(t)
\]

at the lens. The two copies of the pulse travel to the SHG. In general, second harmonic generation produces an output proportional to the square of the input, or in this case.

Equation [7-1]. Square of the Envelope Function of the Signal in the Autocorrelator

\[
E^2\left(t - \frac{D_F}{c}\right) + \left(E^2\left(t - \frac{D_V(t)}{c}\right) + E\left(t - \frac{D_F}{c}\right)E\left(t - \frac{D_V}{c}\right)\right)
\]

The first term of Equation [7-1] represents a second harmonic pulse formed only from light that propagated along the fixed beam path and the second term is the same quantity for the variable beam path. The third term, however, represents a pulse formed from a mixing of the light that traveled along the two different paths. Its magnitude depends on the path difference between the fixed and variable arms of the autocorrelator, as can be seen by substituting \(t = t - \frac{D_F}{c} \) into Equation [7-1] and rearranging the terms to produce:

Equation [7-2]. The Envelope Function Expressed as a Function of the Temporal Path Difference of the Two Arms

\[
E^2(t') + E^2(t' - A(t)) + E(t')E(t' - A(t))
\]

where \(A(t) = \frac{(D - D_F(t))}{c} \) is the time difference introduced by the autocorrelator between the fixed and variable copies of the pulse, changing over time according to the action of the spinning mirrors.

The photomultiplier tube (PMT) is much slower than the pulse envelope function \(E(t) \). The photomultiplier therefore integrates the light incident upon it and produces a signal \(S(t) \) that is mathematically the integral of Equation [7-2].

Equation [7-3]. Response of the PMT to the Incident Light

\[
S(t) = \int (E^2((t') + E^2 t' - A(t)) + E(t')E(t' - A(t))) dt'
\]

The first two integrals are identical and are independent of the path difference \(A(t) \). The third integral contains the pulse autocorrelation information that we wish to measure.
While it is possible to obtain useful information from the signal represented by Equation [7-3], the first two integrals constitute a fixed background level that complicates the interpretation of observed data. These two integrals are effectively eliminated by the method of non-collinear phase matching in the SHG crystal. A simple theoretical understanding of this method can be gained from the momentum representation of the second harmonic process, in which there is a three-wave interaction satisfying the following conservation requirement.

Equation [7-4]. The conservation of momentum for a Second Harmonic process

\[k_F + k_V = k_{SHG} \]

The \(k \)'s are vector quantities associated with the fixed, variable and second harmonic light fields, respectively. The direction of each \(k \) is the direction of beam propagation and the magnitude of each \(k \) is inversely proportional to the wavelength of the light. The vector equation (Equation [7-4]) can be represented geometrically for the case of non-collinear phase matching by Figure 7-8, where it is assumed that \(k_F \) and \(k_V \) are identical in magnitude but slightly different in direction. The figure shows that the direction of \(k_{SHG} \) must fall halfway between the fixed and variable beam directions. Thus the non-collinearly phase-matched pulse, the third term in Equation [7-4], can be identified and selected by its propagation direction. The photomultiplier is positioned behind a small entrance slit that passes predominantly the non-collinear beam, thus measuring a signal produced by only the third term in Equation [7-3]. This is often called background-free autocorrelation.

![Figure 7-8. Non-collinear Phase Matching](image-url)
The below expression for \(A(t) \) is a reasonable approximation for the changes that occur in the variable delay path as a function of time.

\[
A(t) = t_0 + mt
\]

Deviations from the straight line approximation behavior can be evaluated by calibrating the autocorrelator at several different positions within its total scan range. For measurement of Chameleon pulses, such deviations are generally not significant.

Equation [7-5]. Response of the PMT Expressed as a Function of the Pulse Time Delay

\[
S(t'') = \int E(t') E(t' - t_0 + t'') dt'
\]

The substitution \(t'' = mt \), relating pulse delay time \(t'' \) to real time \(t \), has been made. This is the exact expression for the pulse autocorrelation function (except for the constant offset \(t_0 \)). The variable \(t'' \) is the pulse time delay introduced by the spinning mirrors. It is related to real time by the constant factor \(m \) that is the calibration factor for the autocorrelator.

When making an autocorrelation measurement on a high repetition rate laser such as the Chameleon Ultra or Chameleon Vision, pulses are continually incident on the autocorrelator. The photomultiplier signal represents the instantaneous value of \(S(t'') \), that varies over time as the mirrors spin. On most autocorrelators, the photomultiplier output is then sent to an oscilloscope (some autocorrelators have a built-in display) to provide a real-time display of the autocorrelation function. The calibration factor \(m \) must be applied to the real-time display to convert real time \(t \) to pulse delay time \(t'' \).

A typical calibration factor might be 30 ps/ms, indicating that a 30 ps pulse autocorrelation width would produce an oscilloscope trace with a FWHM of 1 ms. A Chameleon pulse with an autocorrelation width of 300 fs would therefore produce an oscilloscope trace with a FWHM of 10 µs.

The autocorrelator provides a trigger signal to initiate the oscilloscope sweep. This signal is synchronized to the spinning mirrors, such that successive sweeps of the mirrors will superimpose on the oscilloscope display. Adjustment of the trigger signal in time is accomplished with an external control on the autocorrelator; this adjustment effectively changes the value of \(t_0 \) in Equation [7-5].
Time Resolution

The time resolution of the autocorrelator is related to the time constant of the photomultiplier. An estimated time resolution can be obtained by multiplying this time constant by the calibration factor. The autocorrelator has a time constant of approximately 1 µs, corresponding to a 30 fs time resolution. This is adequate to display the Chameleon pulse with high accuracy.
An autocorrelation trace is an indirect measure of a pulse shape and in principle cannot reveal the exact shape of $E(t)$. For example, $S(t'')$ in Equation [7-5] is always symmetrical about the position $t''-t_0$; autocorrelation functions are always symmetrical around their peak. Information about asymmetries in $E(t)$ is therefore unavailable from a measurement of $S(t'')$.

As a tool for measuring pulse widths, autocorrelation techniques are limited by the fact that there is no general relationship between the width of $S(t'')$ and the width of $E(t)$. The ratio of FWHMs between $S(t'')$ and $E(t)$ can be calculated for model pulse shapes, but it is difficult to estimate the validity of the model for a given practical situation. Table 7-1 lists some common model pulse shapes and the corresponding FWHM ratio.

Autocorrelation traces for Chameleon Ultra or Chameleon Vision pulses suggest by their functional form that they are best described by a sech² pulse shape. Table 7-1 indicates that a factor of 0.648 should be applied to convert observed autocorrelation widths to actual pulse widths. While such a conversion may provide a useful insight into the detailed properties of the pulse, it should be done with an awareness of the assumptions and possible errors involved.
Table 7-1. Time-Bandwidth Products For Typical Model Pulse Shapes

<table>
<thead>
<tr>
<th>Function</th>
<th>(I(t))</th>
<th>(T_p/T_{AC})</th>
<th>(\Delta\nu T_{AC})</th>
<th>(\Delta\nu T_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square</td>
<td>(I(t) = \begin{cases} 1, &</td>
<td>t</td>
<td>\leq \frac{\tau_p}{2} \ 0, &</td>
<td>t</td>
</tr>
<tr>
<td>Gaussian</td>
<td>(I(t) = \exp \left[-\frac{4(\ln 2)t^2}{\tau_p^2}\right])</td>
<td>0.707</td>
<td>0.624</td>
<td>0.441</td>
</tr>
<tr>
<td>Hyperbolic secant</td>
<td>(I(t) = \text{sech}^2 \left(\frac{1.76t}{\tau_p}\right))</td>
<td>0.648</td>
<td>0.486</td>
<td>0.315</td>
</tr>
<tr>
<td>Lorenzian</td>
<td>(I(t) = \frac{1}{1 + \frac{4t^2}{\tau_p^2}})</td>
<td>0.500</td>
<td>0.441</td>
<td>0.2206</td>
</tr>
<tr>
<td>Symmetric 2-sided exponential</td>
<td>(I(t) = \exp \left[-2\frac{</td>
<td>\ln(2)</td>
<td>}{\tau_p}\right])</td>
<td>0.413</td>
</tr>
</tbody>
</table>

\(\tau_p\) ≡ FWHM of intensity envelope function in seconds.

\(\tau_{AC}\) ≡ FWHM of autocorrelation function of corresponding intensity envelope.

\(\Delta\nu\) ≡ FWHM of power spectrum in units of Hertz.
Time-Bandwidth Product

Multiplying together the spectral bandwidth and the real temporal width produces the time-bandwidth product that has a theoretical minimum value known as the transform limit. This chapter defines this terminology.

The time-dependent electric field $E(t)$ associated with any laser pulse at a fixed point in space can be written in general form as in Equation [7-6].

Equation [7-6]. Time-Dependent Electric Field

$$E(t) = A(t) \exp(-i\omega_0 t)$$

In this expression, $A(t)$ is the envelope function and ω_0 is the carrier frequency. Both $A(t)$ and $E(t)$ are complex functions. The frequency spectrum associated with the pulse $E(t)$ is given by the Fourier transform of $E(t)$, that is designated $E'(\omega)$.

Equation [7-7]. Fourier Transform of $E(t)$

$$E'(\omega) = \frac{1}{2\pi} \int E(t) e^{-i\omega t} dt$$

Equation [7-8]. Fourier Transform of $E'(t)$

$$E'(\omega) = A'(\omega - \omega_0)$$

While the functions $A(t)$ and $A'(\omega)$ are complex, only the square of the field; i.e., $|E(t)|^2$ or $|E(\omega)|^2$, is generally observable due to the fact that photodetectors respond to intensity (power) and not to E-field. Thus information about the imaginary parts of $E(t)$ and $E'(\omega)$ that relate to phase variation within the pulse is not directly observable. However, this information can be inferred by comparing the pulse envelope intensity $|A(t)|^2$ with the power spectrum $|A(\omega)|^2$. A simple approach to this can be taken in cases where the envelope functions $A(t)$ and $A'(\omega)$ are smoothly varying. One can then define the intensity temporal width and the pulse bandwidth of the power spectrum as:

Equation [7-9]. Pulse Width (Seconds)

$$\tau_p = FWHM(|A(t)|^2)$$

Equation [7-10]. Bandwidth (Hz)

$$\Delta \nu = 2\pi FWHM(|A'(\omega)|^2)$$

$FWHM$ denotes the full width at half maximum.

The observable quantities τ_p and $\Delta \nu$ determine the time-bandwidth product (T).

Equation [7-11]. Time-Bandwidth Product

$$\tau_p \times \Delta \nu = T$$
The time-bandwidth product is an easily measured characteristic of ultrafast pulses. It provides a useful estimate of pulse quality, since it achieves its minimum value when \(A(t) \) is purely real and the pulse is fully phase coherent. For ultrafast pulses, however, interpretation of time-bandwidth product data suffers from the limitation that the pulse envelope function \(|A(t)|^2 \) can only be measured indirectly by means of autocorrelation techniques. It is possible to examine several model functions for \(A(t) \) and to calculate the minimum time-bandwidth product for each model using Equation [7-6] through Equation [7-10]. This information is presented in Table 7-1.

Power Supply

The power supply houses several circuit boards, an internal commercial power supply, two laser diode assemblies and cooling fans. The power supply provides the following functions for the pump laser:

- Provides a light source (pump) for the gain medium in the Verdi head cavity via a fiber optic in the umbilical; light is generated by the laser diode assembly
- Provides a user interface; the user interface consists of the front and rear panel controls and indicators
- Controls and monitors the servo loops in the laser; the controls and servo loops are:
 - TEC loops for Vanadate, Etalon, Ti:Sapphire and diodes
 - LBO heater (monitor and control)
 - Light loop
 - Diode heat sinks (monitor and control)
 - Baseplate temperature (monitor only)
- Provides a source of DC voltage for all system functions; the internal power supply provides +48 VDC, which is distributed to the laser
Laser Diode Assembly

The hermetically sealed laser diode assembly contains a fiber array package-integrated (FAP-I), a circuit board with an EEPROM and a heat sink sensor.

Direct or reflected radiation from a laser diode assembly (FAP-I) is capable of causing severe eye damage. Do not look into the output port of the FAP-I, or the end of the fiber optical cable when connected to the diode assembly, when the FAP-I is installed in the system.

The FAP-I consists of a laser diode bar with collection and symmetrizing optics mounted within an environmentally sealed package. The FAP-I efficiently converts a low-voltage, high-current electrical power into a circularly-symmetric, multi-mode laser beam. The FAP-I is designed to operate under CW operating conditions at high, multi-watt output powers for thousands of hours. Waste heat from the laser diode bar is transferred through the FAP-I base to a heat sink.

The FAP-I contains a laser diode bar that efficiently converts electrical energy into optical laser energy. The laser diode bar consists of a multiplicity of independent emitters spaced linearly along a single semiconductor substrate. The output of each of these emitters is captured by a collecting optical fiber. This linear array of fibers is then bundled into a circularly symmetric output.

At low drive currents, the laser diode bar will have insufficient gain to lase. In this operating regime, some light, originating from spontaneous emission, will be visible. As the drive current is increased, the laser diode bar will reach threshold, where it will have sufficient gain to lase. This drive current is the threshold current. Further increases in current will cause a linear increase in output optical power up to the specified operating power.

In general, semiconductor devices perform better at lower operating temperatures. The optical-to-electrical conversion efficiency is higher and the device lifetime is longer. It is desirable to operate the FAP-I at low temperatures consistent with observing the specified operating temperature limits to improve device performance and lifetime.

However, the precise semiconductor operating wavelength is a function of operating temperature. Control of the temperature is extremely important to bring the wavelengths of the diodes within the absorption window of Vanadate.
Diode/Heat Sink Temperature

The laser diode assembly that houses the FAP-I is mounted on a finned heat sink located in the power supply. The temperature of the diode bars located within the FAP-I is controlled by a TEC. Waste heat from the diode bars is transferred to the passive heat sink.

The heat sink is cooled by fans that exhaust waste heat from the laser diode assembly to the outside of the power supply. Incoming ambient air is filtered by an air filter, which can be cleaned periodically, depending on the operating environment.

The laser diodes have an operating temperature range of 5.0°C to 35.0°C.
APPENDIX A: MRU X1

Description and Specifications

The Coherent miniature re-circulator unit, the MRU X1, shown in Figure A-1, is a stand-alone, 19” compatible rack mount unit designed to dry and filter air, then circulate it at atmospheric pressure and low flow rate. Clean dry air is sent to a sealed laser head to enable and maintain long-term reliable operation. A return line completes the air re-circulation back to the MRU X1.

Figure A-1. Coherent MRU X1
This unit was designed for use specifically in conjunction with Chameleon Ultra and Chameleon Vision lasers. It controls the humidity and cleanliness of the environment within the laser chamber to ensure long reliable operation of the optics and control mechanisms.

System Features

There are three filter stages within the MRU X1:

- The first stage removes moisture via a replaceable desiccant filter.
- The second stage removes other molecular contaminants, particularly small polar compounds.
- The final stage is a 0.3 μm high-efficiency particulate air (HEPA) filter, removing any dust and debris emanating from the preceding filter stages.

The second and third filtration stages are designed for minimal user intervention and, depending on the ambient conditions, should last the lifetime of the Chameleon Ultra and Chameleon Vision laser.

The air is circulated by means of a clean, oil-free diaphragm pump.

There are two interlock functions on the MRU X1. If for any reason these are open circuit, laser action is prevented:

1. **EXT. INTERLOCK** - This connects to a 4-pin HR-10 plug provided in the accessory kit. This can be used to connect the laser to another external interlock, such as a door for example, and replicates the original function of the EXT. INTERLOCK on the back panel of the laser power supply.

2. **PSU INTERLOCK** - This connects the original EXT. INTERLOCK socket on the back of the laser power supply to the MRU X1 by a cable with 3-pin mini-DIN plugs, provided in the accessory kit.
System Specifications

Table A-1. MRU X1 System Specifications

<table>
<thead>
<tr>
<th>SYSTEM PARAMETER</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>478 mm x 491 mm x 95 mm (18.8” x 19.3” x 3.7”)</td>
</tr>
<tr>
<td>Weight</td>
<td>12 kg (26.5 lbs.)</td>
</tr>
<tr>
<td>Airflow Rate</td>
<td>1 to 2.5 L/min.</td>
</tr>
<tr>
<td>Maximum Continuous Pressure</td>
<td>1.4 bar (absolute)</td>
</tr>
<tr>
<td>Maximum End Vacuum</td>
<td>0.24 bar (absolute)</td>
</tr>
<tr>
<td>Voltage Input</td>
<td>100 to 240 VAC, 50/60 Hz</td>
</tr>
<tr>
<td>Fuse Rating</td>
<td>5 Amp (T5A L 250 V)</td>
</tr>
<tr>
<td>BNC Output</td>
<td>0 to 5 V, 1 MΩ</td>
</tr>
<tr>
<td>Interlock Circuit Rating</td>
<td>Normally open 12 VDC (dependent on laser circuit)</td>
</tr>
<tr>
<td>Interlock Impedance</td>
<td>< 0.2 Ω</td>
</tr>
</tbody>
</table>
Safety

The MRU X1 is a low-flow, low pressure device operating at around 3 to 5 psi and is an inherently safe device.

However, since it operates in conjunction with Class 4 laser systems, the appropriate laser manual safety procedures and government regulations pertaining to Class 4 laser emissions in laboratories must be enforced in the MRU X1 environment.

Chemical Safety

The MRU X1 contains two main chemicals: Drierite and Molecular Sieve 4A. In normal operation, the user will not come into contact with these chemicals as they are contained within the MRU X1 enclosure.

These chemicals present no risk to health, providing that their sealed containers are not opened. While there is no need to open the filter housing to replenish them (since the filters can be exchanged as modules), if their respective containers are opened, they present a relatively low risk to health, provided they are handled with care and are disposed of in accordance with local government health and safety regulations. The Manufacturer Safety Data Sheets (MSDS) for the two filter materials Drierite and Molecular Sieve 4A are provided at the end of this appendix.

Operating Controls

The MRU X1 has only one user-operated control. The ON/OFF switch on the back panel, which is part of the mains input power module. The switch turns the MRU X1 power on to activate the power supply, interlock PCB and the air pump.

Location of Safety Labels

There are five labels, three of which are safety labels positioned on the rear panel of the MRU X1 and two which are located inside the enclosure.

The product nameplate label, the specified fuse rating label and the CE Mark label are located on the back panel, to the left of the power entry module.

Inside the MRU X1 enclosure, the electrical hazard label is placed above the power supply on the protective shield and the earth label is beside an internal earth post.
The MRU X1 has been designed to comply with electrical safety requirements and has been tested to meet CE regulations for electromagnetic emissions to the standards listed in Table A-2.

Table A-2. CE Regulations Standards

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DETAILS</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC</td>
<td>Pass</td>
<td>EN 55022 (1998)</td>
</tr>
<tr>
<td>—</td>
<td>Pass</td>
<td>EN 50082-1 (1998)</td>
</tr>
<tr>
<td>LVD</td>
<td>Pass</td>
<td>EN 61010-1 (1993)</td>
</tr>
<tr>
<td>Safety</td>
<td>Pass</td>
<td>EN 60825-1 (2001)</td>
</tr>
</tbody>
</table>
Installation

Receiving and Inspection

On receipt of the MRU X1, remove it from its box and check that all parts are present and undamaged.

19” Rack Mounting Brackets

The MRU X1 can be mounted into a 19” rack by attaching the two brackets supplied in the accessory kit to the sides of the enclosure. The brackets are removed for shipping. There are four screws supplied to enable the brackets to be attached to the sides of the enclosure at the front using a 1/8” Allen (hex) key.

External Connections

Before making or breaking any electrical or air connections to the MRU X1, ensure that the system is switched off and that the laser has been switched to the STANDBY position. Refer to “Turning the System Off” on page 4-4 for laser operating instructions if necessary.

Air Connections

The MRU X1 comes ready-made with all necessary connectors and hoses. The hoses and fittings are color-coded to ensure the flow direction is correct.

The connectors for the MRU must not be contaminated during handling or set up. These ports provide a direct line to the laser head. If clean handling is not observed, contamination may work itself inside the laser head reducing the lifetime of the laser.

1. Connect the blue band hose quick-release connector to the MRU X1 OUT port (blue label) on the back of the MRU X1 system. This should be pushed home firmly until it clicks and locks in position.

2. Connect the other end of this blue band hose to the laser head IN port. Push the quick-release connector in firmly until it clicks and locks in position.

3. Connect the red band hose quick-release connector to the laser head OUT port (red label). This should be pushed home firmly until it clicks and locks in position.
4. In similar manner, connect the return red band hose from the laser head to the MRU X1 IN (red label) port on the MRU X1 system. This should be pushed in firmly until it clicks and locks in position.

5. Finally, confirm that the air flow direction is correct: MRU X1 OUT to laser head IN; laser head OUT to MRU X1 IN.

Different fitting types for air and water-cooling connection lines prevent accidentally or inadvertently connecting air lines to the water-cooling circuit or water-cooling lines to the air circuit. If using fittings different than original, make certain the air and water lines are not mixed up! Pumping water into the laser head air lines voids the warranty. Pumping water into the MRU X1 air lines voids the warranty.

Interlock Connections

It is essential to the safe and reliable operation of the MRU X1 that the interlock connection between the MRU X1 and the laser power supply is made correctly. Failure to do so could result in serious injury to personnel and could cause severe damage to the laser and invalidate the warranty.

The interlock system has been designed using different style connectors so that MRU X1 is the master interlock. The laser power supply interlock will not be satisfied unless the MRU X1 is powered on and the MRU X1 EXT interlock is closed (interlock override plug installed or customer provide switch or contact is closed). A customer constructed door interlock cable, using the provided HR10 connector, cannot be plugged into the power supply bypassing the MRU X1. The purpose of this design is to reduce the chance of the laser operating without a functional MRU X1.

1. Connect the PSU interlock cable supplied in the accessory kit to the PSU INTERLOCK socket on the back of the MRU X1 unit.

2. Connect the other end of this cable to the EXTERNAL INTERLOCK on the back of the Chameleon Ultra or Chameleon Vision laser power supply.
3. Connect the external interlock over-ride plug supplied in the accessory kit to the EXT INTERLOCK on the back of the MRU X1 unit.

This external interlock must be satisfied by either the interlock over-ride (interlock defeat) plug or via connection to a control switch, relay contacts or some other external safety device, such as a trip switch. If the interlock circuit is opened or broken in any way, the laser switches off immediately. When the break is rectified, the laser must be reset to clear the Interlock Fault (see “Checklist 4: External Interlock Fault” on page 6-6).

Example interlock circuits are shown in Figure A-3.

![Interlock Circuit Diagram](image)

A. Interlock Circuit Over-ridden (defeated) by Jumper

Figure A-3. Example Interlock Circuits
B. Interlock Circuit Satisfied by Closure of SPST Switch

Figure A-3. Example Interlock Circuits (Continued)
C. Interlock Circuit Satisfied by Closure of Relay Contacts; Relay Energized by “Laser In Use” SPST Switch

Figure A-3. Example Interlock Circuits (Continued)

If the user has already constructed a door interlock cable that uses a connector style other than the HR10, the cable must be modified to use the HR10 style connector used on EXT connection on the MRU X1.
Controls and Indicators

1. Rack mount
2. Air Flow “Out” connector
3. Air Flow “In” connector
4. Facility power connector
5. Power switch and LED
6. (Input) Fuse block

Figure A-4. MRU X1 Controls and Indicators
The following sections highlight the controls, indicators and features located on the front panel of the MRU X1.

Front Panel Indicator

The following sections highlight the controls, indicators and features located on the front panel of the MRU X1.

Power LED

An LED is provided to indicate whether the MRU X1 is powered. When powered on, the LED will glow bright green.

Table A-3. MRU X1 Controls and Indicators

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CONTROL</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rack mount</td>
<td>Allows the MRU X1 to be installed in a standard laboratory mount. The length x width dimensions of the MRU X1 are 45.1 x 43.5 cm (17.75 x 17.13 in.).</td>
</tr>
<tr>
<td>2</td>
<td>Flow “Out” connector</td>
<td>Connects the output line flow to Chameleon Ultra or Chameleon Vision laser head.</td>
</tr>
<tr>
<td>3</td>
<td>Flow “In” connector</td>
<td>Connects the return line flow from Chameleon Ultra or Chameleon Vision laser head.</td>
</tr>
<tr>
<td>4</td>
<td>Power Cord Connector</td>
<td>The power input module provides cord connection of the MRU X1 to facility power. The internal power supply is auto-switching, 100 - 240 VAC 50/60 Hz.</td>
</tr>
<tr>
<td>5</td>
<td>Power Switch and LED</td>
<td>Turns the MRU X1 on. The LED in the power switch illuminates when the power is enabled. To assure the longest lifetime from the Chameleon Ultra or Chameleon Vision laser system the MRU X1 should be left on at all times. For additional information see “Daily Use” on page 4-4.</td>
</tr>
<tr>
<td>6</td>
<td>Fuse Block</td>
<td>Retains the mains input fuses, T 5A (x2)</td>
</tr>
</tbody>
</table>
The following sections highlight the controls, indicators and features located on the rear panel of the MRU X1.

Air In & Air Out Ports

The AIR OUT and AIR IN ports are Swagelock automatic shut-off type, such that when the connector is removed, the port seals itself. The fittings must be pushed quite firmly together until they “click” and lock home.

The air directionality must be followed on the MRU X1. The fittings are therefore color-coded blue for AIR OUT and red for AIR IN. See Figure A-5.

Interlocks

Two interlock connections are provided on the rear panel - the PSU (power supply unit) interlock and the EXT (external) interlock. See Figure A-5.

The PSU interlock connects the MRU X1 to the laser power supply interlock port using 3-pin mini-DIN type connectors on a 4 m length of cable. The EXT interlock connection must be closed, either by a shorted mating plug (interlock over-ride plug) or via an optional customer supplied door switch using a 4-pin HR10 type connector.

The PSU cable, an EXT interlock over-ride plug and a spare HR10 connector are provided in the MRU X1 accessory kit.
Mains Power Input

The MRU X1 has a universal mains power input beside the power switch on the rear panel. The fuse holder can be pulled out enabling the fuses to be checked. See Figure A-6.

Figure A-6. Mains Input Showing Fuse Access
Maintenance
and
Troubleshooting

Contacting Coherent Service

The following section describes basic troubleshooting procedures which can help the user diagnose and correct many operational troubles with the MRU X1. If a particular problem cannot be resolved, or if a procedure calls for it, Coherent Service should be contacted from the USA by phone at (800) 367-7890, by e-mail at Product.Support@Coherent.com, or via the appropriate authorized international Coherent Service representative. Please have the following information ready for the Coherent Service representative:

- The model name and serial number of the Chameleon Ultra or Chameleon Vision laser with which the MRU X1 is currently being used.

Maintenance

The MRU X1 requires only minimal maintenance intervention to verify the operation of the interlock circuit, to replace expired desiccant filters and to occasionally monitor the 4A Molecular Sieve indicator.

Interlock Circuit Checkout

On an annual basis (or more frequently if local regulations require), verify the interlock circuit is functional.

1. Place the Chameleon Ultra or Chameleon Vision in a normal operating mode.
2. Open (or remove) the EXT Interlock connection from the rear of the MRU X1 and verify the laser faults with an External Interlock error.
3. Close (or insert) the EXT Interlock connection to the rear of the MRU X1 and reset the Interlock fault.
4. With the laser again in a normal operating mode, turn off the MRU X1 power switch and verify the laser faults with an External Interlock error.
5. Turn MRU X1 power back on, reset the Interlock fault and verify the laser returns to normal operating mode.
Desiccant Filter

Typically the duration of the cylinder desiccant pack within the MRU X1 lasts the lifetime of the Chameleon Ultra or Chameleon Vision laser system. However, operating the MRU X1 in an unusually high- or low-temperature environment or in excessive humidity may reduce the desiccant lifetime significantly.

As the desiccant absorbs moisture, the color changes from light blue to a darker shade of blue and then to pink.

When the desiccant color changes to a darker blue or pink along its entire length, the desiccant filter must be replaced immediately. It is advisable to change the desiccant filters just prior to their depletion. It is not recommended that the MRU X1 be operated when the desiccant is pink.

Inspect/Change Desiccant Filter

The cylinder desiccant pack within the MRU X1 should be inspected for the color change described above on a 6-monthly schedule; however, if the MRU X1 is operated in very humid environments the frequency should be increased based on experience.

The laser must be switched off when this activity is carried out. The interlock otherwise switches the laser off when the power to the MRU X1 is turned off or the filter housing is disconnected.

1. Perform a “Normal Shutdown” of the Chameleon Ultra or Chameleon Vision laser.
2. Turn off the MRU X1 at the power switch on the rear panel.
3. Remove the cover by releasing the 12 hexagonal socket screws on the top cover of the MRU X1.
4. Refer to Figure A-7. The desiccant filter is located behind the front panel. Note the position and orientation of the filter housing and air lines.
5. To remove the filter, disconnect the two quick-release hose fittings, then lift out the filter by prying apart the retaining clamps at either end of the filter.
6. Once removed, the desiccant filter can be replaced or refilled with new Drierite material. Unscrewing the cap and refilling the Drierite material is straightforward. Be sure the spring, metal plate and felt are replaced as they were between the Drierite material and air port.
The connectors are the locking quick-release type and as such are either home (locked) or not home. When mated, an audible “click” indicates a locked condition. To confirm the lock, give a gentle pull and verify the connectors do not separate.

To order spares, the replacement filter part numbers can be found in the Parts List.

The 4A Molecular Sieve filter should also be inspected when the desiccant filter is changed.

Change the 4A Molecular Sieve filter every 5,000 hours or when the blue indicator band of beads halfway along the filter length has changed to a beige or buff (light tan) color. A light tan color indicates that the filter has absorbed moisture up to at least this point and therefore may be expired.
The laser must be switched off when this activity is carried out. The interlock otherwise switches the laser off when the power to the MRU X1 is turned off or the filter housing is disconnected.

1. Perform a “Normal Shutdown” of the Chameleon Ultra or Chameleon Vision laser.
2. Turn off the MRU X1 at the power switch on the rear panel.
3. If not already off, remove the cover by releasing the 12 hexagonal socket screws on the top cover of the MRU X1.
4. Refer to Figure A-7. The 4A Molecular Sieve filter has light tan colored pellets and is located towards the center of the MRU X1. To remove, cut the tie wraps and loosen the two end tubing connectors.
5. Note the filter location and orientation of the direction of flow arrow and then lift out the filter.
6. Replacement is the reverse of the procedure above. Push the filter back into position and orientate it such that it lines up with the original fittings. Tighten the tubing connections firmly and secure the filter with tie wraps.

HEPA Filter Replacement

It is recommended to replace the HEPA filter every three years or 25,000 hours of operation, though effectively it lasts the life of the system.

Fuse Replacement

The following procedure outlines the replacement of the MRU X1 mains fuse(s).

1. Using a small, flat screwdriver lever, open the top catch and flip down the door above the mains input socket. Refer to Figure A-6.
2. Then lever out and pull the red draw holding the two fuses.
3. Remove the two fuses and check to see which is blown using a DVM.
4. Replace the blown fuse(s) with a 5 A (T5 A L 250 V) and slide the draw back into place.
5. Replace the catch.
Drierite MSDS

Material Safety Data Sheet: Drierite

- **IDENTITY:** INDICATING DRIERITE
- **DATE PREPARED:** 11-12-2002
- **DESCRIPTION:** 1/8” TO 1/4” GRANULES

Product and Company Identification

- **MANUFACTURERS NAME:** W.A. HAMMOND DRIERITE CO., LTD.
- **ADDRESS:**

 P.O. BOX 460,
 138 DAYTON AVE.
 XENIA, OH 45385
 USA

 EMERGENCY PHONE NUMBER:
 937-376-2927

 INFORMATION PHONE NUMBER:
 937-376-2927

Ingredients

<table>
<thead>
<tr>
<th>CHEMICAL IDENTITY</th>
<th>% OSHA PEL</th>
<th>ACGIH TLV UNITS</th>
<th>C.A.S.#</th>
<th>TSCA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALCIUM SULFATE, 97</td>
<td>15 10 mg/M3</td>
<td>7778-18-9 A739-8876</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COBALT CHLORIDE, 3</td>
<td>0.05* 0.05* mg/M3</td>
<td>7646-79-9 A451-6434</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(AS COBALT METAL)

HAZARDOUS MATERIAL IDENTIFICATION SYSTEMS (HMIS)

- HEALTH FLAMMABILITY REACTIVITY PROTECTIVE EQUIPMENT 1 0 1 E
Physical and Chemical Characteristics

Table A-4. Physical / Chemical Characteristics

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific gravity: (H₂0-1)</td>
<td>1.87</td>
</tr>
<tr>
<td>Solubility in water</td>
<td>0.25 Grams Per Liter</td>
</tr>
<tr>
<td>Melting point</td>
<td>1450°C Decomposes</td>
</tr>
<tr>
<td>Appearance</td>
<td>Blue Granules; No Odor</td>
</tr>
</tbody>
</table>

Fire and Explosion Hazard Data

Table A-5. Fire and Explosion Hazard Data

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash point</td>
<td>None</td>
</tr>
<tr>
<td>Extinguisher media</td>
<td>Not combustible</td>
</tr>
<tr>
<td>Special fire fighting procedures</td>
<td>None</td>
</tr>
<tr>
<td>Unusual fire and explosion hazards</td>
<td>None</td>
</tr>
</tbody>
</table>

Reactivity Data

Table A-6. Reactivity Data

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stability</td>
<td>Stable</td>
</tr>
<tr>
<td>Incompatible (materials to avoid)</td>
<td>Strong acids</td>
</tr>
<tr>
<td>Hazardous decomposition by-products</td>
<td>SO₃ at 1450°C C Cl₂ at 318°C</td>
</tr>
<tr>
<td>Hazardous polymerization</td>
<td>Does not occur</td>
</tr>
</tbody>
</table>
Health Hazard Data

Table A-7. Health Hazard Data

<table>
<thead>
<tr>
<th>AREA</th>
<th>AFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyes</td>
<td>Particles may cause irritation.</td>
</tr>
<tr>
<td>Skin</td>
<td>This material is not toxic. May dry or irritate skin.</td>
</tr>
<tr>
<td>Inhalation</td>
<td>May cause an irritation or respiratory organs of sensitive persons resulting in the obstruction of air ways with shortness of breath.</td>
</tr>
<tr>
<td>Ingestion</td>
<td>May cause vomiting, diarrhea and sensation of warmth.</td>
</tr>
<tr>
<td>Signs and symptoms of over exposure</td>
<td>Eyes, nose, throat, or respiratory irritation.</td>
</tr>
<tr>
<td>Carcinogenicity of ingredients</td>
<td>Material IARC, NTP, OSHA all not listed, not listed, not listed cobalt chloride yes*, no, no.</td>
</tr>
<tr>
<td>Medical conditions generally aggravated by exposure</td>
<td>Pre-existing upper respiratory and lung disease such as but not limited to bronchitis, emphysema and asthma.</td>
</tr>
</tbody>
</table>

*IARC has stated that there is sufficient evidence for the carcinogenicity of Cobalt metal powder in experimental animals. On the basis of animal evidence from experiments not regarded as relevant to human exposure, IARC has classified Cobalt as 2B, possible carcinogen for humans. ACGIH has given Cobalt a rating of A3, animal carcinogen. They state that available epidemiologic studies do not confirm an increased risk of cancer in exposed humans.

Emergency and First Aid Procedures

Table A-8. Emergency and First Aid Procedures

<table>
<thead>
<tr>
<th>AREA</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyes</td>
<td>Flush with water. If irritation continues, obtain medical attention.</td>
</tr>
<tr>
<td>Dust inhalation</td>
<td>Remove to fresh air.</td>
</tr>
<tr>
<td>Skin</td>
<td>Wash with water.</td>
</tr>
<tr>
<td>Ingestion</td>
<td>If patient is conscious, induce vomiting; obtain medical attention.</td>
</tr>
</tbody>
</table>
Table A-9. Spill or Leakage Procedures

<table>
<thead>
<tr>
<th>AREA</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steps to be taken in case material is released or spilled</td>
<td>Sweep or vacuum material into appropriate waste container for disposal. Avoid dusting conditions.</td>
</tr>
<tr>
<td>Waste disposal method</td>
<td>This material can be disposed of in accordance with procedures acceptable under federal, state and local regulations.</td>
</tr>
<tr>
<td>Precautions to be taken in handling and storing</td>
<td>Keep container closed. Store in cool, dry place. Avoid generating dust.</td>
</tr>
</tbody>
</table>

Table A-10. Control Measures

<table>
<thead>
<tr>
<th>AREA</th>
<th>MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory protection</td>
<td>Mask NIOSH/OSHA approved for dust.</td>
</tr>
<tr>
<td>Ventilation</td>
<td>To meet TLV requirements.</td>
</tr>
<tr>
<td>Eyes</td>
<td>Safety glasses oroggles.</td>
</tr>
<tr>
<td>Other protective equipment</td>
<td>Gloves or protective clothing not usually necessary but may be desirable in specific work situations.</td>
</tr>
</tbody>
</table>

References

Although the information and recommendation set forth herein are presented in good faith and believed to be correct as of the date hereof, the W.A. Hammond Drierite Co., Ltd. makes no representation as to the completeness or accuracy thereof. Information is supplied upon the condition that the person receiving it will make his own determination as to its suitability for his purpose prior to use. In no event is the W.A. Hammond Drierite Co., Ltd. responsible for damages of any nature whatsoever resulting from the use of or reliance upon information herein supplied. No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose of or any other nature made hereunder with respect to information or the product to which information refers.
Molecular Sieve
4A MSDS

Material Safety
Data Sheet -
Molecular
Sieve 4A

Molsiv Adsorbents 4A 1/16 Revision Number: 2, F8941801
February 2001

Product and
Company
Identification

Product Name: Molsiv Adsorbents 4A 1/16
Product Use: Adsorbent
UOP LLC
25 E. Algonquin Road
Des Plaines
IL 60017-5017
USA
Tel: +1-847-391-3189
Fax: +1-847-391-2953

UOP M.S. S.p.A.
Viale Milanofiori
Strada 1 - Palazzo E1
20090 Assago Mi
Italy
Tel: +39-02-892241
Fax: +39-02-57500145

Emergency Assistance - 24 hour Emergency Telephone Numbers:
EUROPE (BIG): + 32-14-58.45.45
USA (UOP LLC): + 1-847-391-2123
USA (CHEMTREC):+ 1-703-527-3887
Composition / Information About Ingredients

Table A-11. Composition / Information On Ingredients

<table>
<thead>
<tr>
<th>INGREDIENT & CAS NO</th>
<th>% WEIGHT</th>
<th>EC SYMBOL</th>
<th>EC R-PHRASES</th>
<th>EC EXPOSURE LIMIT MG/M³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeolites1318-02-1</td>
<td>> 70</td>
<td>N.E.</td>
<td>N.E</td>
<td>10(I)3(R)</td>
</tr>
<tr>
<td>Mineral binder 999999-99-4</td>
<td>< 30</td>
<td>N.E</td>
<td>N.E</td>
<td>N.E</td>
</tr>
<tr>
<td>Quartz 14808-60-7</td>
<td>< 3</td>
<td>N.E</td>
<td>N.E</td>
<td>0.1(R)</td>
</tr>
</tbody>
</table>

Hazard Identification

No hazard classification.

When first wetted, the product can heat up to the boiling point of water. Flooding reduces the temperature. Repeated and prolonged inhalation of crystalline silica in the form of quartz from occupational sources may cause cancer.

First Aid Measures

Table A-12. First Aid Measures

<table>
<thead>
<tr>
<th>AREA</th>
<th>MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye contact</td>
<td>Flush immediately with plenty of water for at least 15 minutes. If eye irritation persists, consult a physician.</td>
</tr>
<tr>
<td>Skin contact</td>
<td>Wash off with soap and plenty of water. If skin irritation persists, call a physician.</td>
</tr>
<tr>
<td>After inhalation</td>
<td>Remove the victim into fresh air. If symptoms persist, call a physician.</td>
</tr>
<tr>
<td>After ingestion</td>
<td>Immediately give large volume of water to drink. If symptoms persist, call a physician.</td>
</tr>
</tbody>
</table>
Fire Fighting Measures

Table A-13. Fire Fighting Measures

<table>
<thead>
<tr>
<th>AREA</th>
<th>MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable extinguishing media</td>
<td>Non-combustible. Use extinguishing media for surrounding fire.</td>
</tr>
<tr>
<td>Unsuitable extinguishing media</td>
<td>N.A.</td>
</tr>
<tr>
<td>Fire and explosion hazards</td>
<td>The product itself does not burn. The used product can retain material of a hazardous nature. Identify that material and inform the fire fighters.</td>
</tr>
<tr>
<td>Special protective equipment</td>
<td>In the case of respirable dust and/or fumes, use self-contained breathing apparatus and dust impervious protective suit.</td>
</tr>
</tbody>
</table>

Accidental Release Measures

Table A-14. Accidental Release Measures

<table>
<thead>
<tr>
<th>AREA</th>
<th>MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal protection</td>
<td>See “Exposure Controls and Personal Protection”.</td>
</tr>
<tr>
<td>Environmental precautions</td>
<td>No special environmental precautions required.</td>
</tr>
<tr>
<td>Clean-up</td>
<td>Sweep, shovel or vacuum spilled product into appropriate containers (do not use a vacuum if material has contacted a hydrocarbon material). Pick-up and arrange disposal without creating dust. Never use spilled product. Spilled product must be disposed in accordance with all applicable government regulations.</td>
</tr>
</tbody>
</table>

Handling and Storage

Table A-15. Handling and Storage

<table>
<thead>
<tr>
<th>AREA</th>
<th>MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handling</td>
<td>Handle and open container with care. Avoid formation of dust particles. Avoid contact with skin and eyes. Provide an electrical ground connection during loading and transfer operations to avoid static discharge in an explosive atmosphere and to prevent persons handling the product from receiving static shocks. A copy of UP’s booklet, “Precautions and Safe Practices for Handling Molecular Sieves in Process Units”, M-100C, can be obtained from your UOP representative at no cost.</td>
</tr>
<tr>
<td>Storage</td>
<td>Store in original container. Keep in a dry place.</td>
</tr>
</tbody>
</table>
Exposure Controls and Personal Protection

Table A-16. Exposure Controls and Personal Protection

<table>
<thead>
<tr>
<th>AREA</th>
<th>MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering measures</td>
<td>Ensure adequate ventilation, especially in confined areas.</td>
</tr>
<tr>
<td>Personal protection equipment</td>
<td>Handle in accordance with good industrial hygiene and safety practice.</td>
</tr>
<tr>
<td>Eye protection</td>
<td>Safety glasses or goggles.</td>
</tr>
<tr>
<td>Hand protection</td>
<td>Protective gloves.</td>
</tr>
<tr>
<td>Skin and body protection</td>
<td>Work uniform and gloves to prevent prolonged contact.</td>
</tr>
<tr>
<td>Respiratory protection</td>
<td>In case of insufficient ventilation wear suitable respiratory equipment. Breathing apparatus with filter: NIOSH classification N-100 or if oil/liquid aerosols are present P-100 (42 CFR 84).</td>
</tr>
</tbody>
</table>

Exposure Limit(s)

Table A-17. International Exposure Limits (mg/m³)

<table>
<thead>
<tr>
<th>INGREDIENT & CAS NO</th>
<th>% WEIGHT</th>
<th>UK OES/MEL</th>
<th>GERMANYMAK</th>
<th>THE NETHERLANDS MAC</th>
<th>FRANCE VME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeolites 1318-02-1</td>
<td>> 70</td>
<td>10(I) 4(R)</td>
<td>4(I) 1.5(R)</td>
<td>10(I)5(R)</td>
<td>10(I)5(R)</td>
</tr>
<tr>
<td>Mineral binder 999999-99-4</td>
<td>< 30</td>
<td>10(I)4(R)</td>
<td>4(I)1.5(R)</td>
<td>N.D.</td>
<td>10(I)5(R)</td>
</tr>
<tr>
<td>Quartz 14808-60-7</td>
<td>< 3</td>
<td>0.3(R)</td>
<td>0.15(R)</td>
<td>0.075(R)</td>
<td>0.1(R)</td>
</tr>
</tbody>
</table>

Note: In case no information on national exposure limits is available, the exposure limit for 'general dust' is presented.
These data do not represent technical or sales specifications.

Table A-18. Physical and Chemical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>Pellets</td>
</tr>
<tr>
<td>Color</td>
<td>Tan</td>
</tr>
<tr>
<td>Odor</td>
<td>None</td>
</tr>
<tr>
<td>pH</td>
<td>8 - 11 (AS)</td>
</tr>
<tr>
<td>Boiling point/range</td>
<td>N.A.</td>
</tr>
<tr>
<td>Melting point/range</td>
<td>N.A.</td>
</tr>
<tr>
<td>Flash Point</td>
<td>N.A.</td>
</tr>
<tr>
<td>Auto-ignition temperature</td>
<td>N.A.</td>
</tr>
<tr>
<td>Bulk density</td>
<td>N.D.</td>
</tr>
<tr>
<td>Explosion limits</td>
<td>N.A.</td>
</tr>
<tr>
<td>Vapor pressure</td>
<td>N.A.</td>
</tr>
<tr>
<td>Relative density/Specific Gravity</td>
<td>N.A.</td>
</tr>
<tr>
<td>Vapor density</td>
<td>N.A.</td>
</tr>
<tr>
<td>Viscosity</td>
<td>N.A.</td>
</tr>
<tr>
<td>Water solubility</td>
<td>N.D.</td>
</tr>
<tr>
<td>Solubility</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Table A-19. Stability and Reactivity

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stability</td>
<td>Stable</td>
</tr>
<tr>
<td>Hazardous decomposition products</td>
<td>No decomposition if used as directed. Hydrocarbons and other materials that contact the product during normal use can be retained on the product. It is reasonable to expect that decomposition products come from these retained materials of use.</td>
</tr>
</tbody>
</table>
| Conditions/Materials to avoid | Sudden contact with high concentrations of chemicals having high heats of adsorption such as Olefins, HCl, etc. When first wetted, the product can heat up to the boiling point of water. Flood with water to cool material.
Table A-20. Toxicological Information

<table>
<thead>
<tr>
<th>Acute toxicity</th>
<th>LD50/oral/rat = > 32 000 mg/kg *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LD50/dermal/rabbit = > 2 000 mg/kg *</td>
</tr>
<tr>
<td></td>
<td>LC50/inhalation/rat = No data available.</td>
</tr>
</tbody>
</table>

Chronic toxicity:	EC Carcinogenic: Not listed.
Classification of	EC Mutagenic: Not listed.
	Carcinogenicity (ACGIH): A2 (Quartz)
	IARC classification: Group 1 (Quartz)
	Group 3 (Zeolites)

| Routes of exposure | Exposure may occur via inhalation, contact with skin and yes. |

| Irritation | Skin (rabbit): Not classified as a skin irritant in animal testing. * |
| | Eye (rabbit): Moderate eye irritation. * |

| Additional product | * The toxicological data has been taken from products of similar composition. |
| information | |

Table A-21. Ecological Information

<table>
<thead>
<tr>
<th>Mobility</th>
<th>No data available.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodegradation</td>
<td>No data available.</td>
</tr>
<tr>
<td>Bioaccumulation</td>
<td>No data available.</td>
</tr>
<tr>
<td>Aquatic toxicity</td>
<td>No data available.</td>
</tr>
<tr>
<td>Further Information</td>
<td>No information available.</td>
</tr>
</tbody>
</table>
Table A-22. Disposal Information

<table>
<thead>
<tr>
<th>Provisions relating to waste</th>
<th>EC Directives 75/442/EC; 91/156/EC; 91/689/EC and 94/31/EC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposal information</td>
<td>Can be land filled after chemical and physical treatment, when in compliance with the local regulations. Store containers and offer for recycling of material according to the local regulations. Contact waste disposal services. Materials of a hazardous nature that contact the product during normal use may be retained on this product. The user of the product must identify the hazards associated with the retained material to assess the waste disposal options.</td>
</tr>
</tbody>
</table>

Table A-23. Transport Information

<table>
<thead>
<tr>
<th>Proper shipping name</th>
<th>Not applicable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN- No.</td>
<td>Packing group: N.A.</td>
</tr>
<tr>
<td>ADR/RID</td>
<td>Not regulated.</td>
</tr>
<tr>
<td></td>
<td>Danger Code: N.A.</td>
</tr>
<tr>
<td></td>
<td>Danger labels: N.A.</td>
</tr>
<tr>
<td>IMO</td>
<td>Not regulated.</td>
</tr>
<tr>
<td></td>
<td>EmS: N.A.</td>
</tr>
<tr>
<td></td>
<td>MFAG: N.A.</td>
</tr>
<tr>
<td></td>
<td>Marine pollutant: No</td>
</tr>
<tr>
<td>ICAO - IATA</td>
<td>Not regulated.</td>
</tr>
<tr>
<td></td>
<td>Instruction “passenger”: N.A.</td>
</tr>
<tr>
<td></td>
<td>Instruction “cargo”: N.A.</td>
</tr>
<tr>
<td>Further Information</td>
<td>Not classified as hazardous or dangerous in the meaning of transport regulations.</td>
</tr>
</tbody>
</table>
Regulatory Information

The product is classified and labeled in accordance with the EC Directives and Regulations.
The product does not need to be labeled in accordance with EC-Directives.

Table A-24. Regulatory Information

<table>
<thead>
<tr>
<th>Symbol(s)</th>
<th>N.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contains</td>
<td>N.A.</td>
</tr>
<tr>
<td>Risk Phrases</td>
<td>None</td>
</tr>
<tr>
<td>Safety phrases</td>
<td>None</td>
</tr>
<tr>
<td>European Inventory of Existing Commercial Chemical Substances</td>
<td>All components of this product are included in EINECS/ELINCS.</td>
</tr>
<tr>
<td>WGK Classification (VwVwS - Germany, June 1999):</td>
<td>nwg</td>
</tr>
</tbody>
</table>

Other Information

Table A-25. Other Information

<table>
<thead>
<tr>
<th>Summary of changes</th>
<th>Sections 3, 11, 15 (US)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supersedes</td>
<td>August 2000</td>
</tr>
<tr>
<td>Prepared by</td>
<td>UOP Health, Safety & Environmental Department</td>
</tr>
</tbody>
</table>
Abbreviations

Table A-26. Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.A.</td>
<td>Not applicable</td>
</tr>
<tr>
<td>N.E.</td>
<td>None established</td>
</tr>
<tr>
<td>N.D.</td>
<td>Not determined</td>
</tr>
<tr>
<td>OEL/MEL</td>
<td>Occupational Exposure Standard / Maximum Exposure Limit</td>
</tr>
<tr>
<td>TWA</td>
<td>Time-Weighted Average</td>
</tr>
<tr>
<td>STEL</td>
<td>Short-Term Exposure Limit</td>
</tr>
<tr>
<td>MAK</td>
<td>Maximal Arbeitsplatz-Konzentration</td>
</tr>
<tr>
<td>MAC</td>
<td>Maximal Arbeidsplaats Concentratie</td>
</tr>
<tr>
<td>VME</td>
<td>des Valeurs limits de Moyenne d'Exposition</td>
</tr>
<tr>
<td>EC</td>
<td>European Community</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
<tr>
<td>SC</td>
<td>Soluble Compounds</td>
</tr>
<tr>
<td>FD</td>
<td>Fine Dust</td>
</tr>
<tr>
<td>TD</td>
<td>Total Dust</td>
</tr>
<tr>
<td>FuD</td>
<td>Fume and Dust</td>
</tr>
<tr>
<td>Fu</td>
<td>Fume</td>
</tr>
<tr>
<td>I</td>
<td>Inhalable</td>
</tr>
<tr>
<td>R</td>
<td>Respirable</td>
</tr>
<tr>
<td>AS</td>
<td>Aqueous slurry</td>
</tr>
<tr>
<td>IS</td>
<td>Insoluble Compounds</td>
</tr>
</tbody>
</table>
Contact Information

For additional information concerning this product, contact the following:

Table A-27. Contact Information

<table>
<thead>
<tr>
<th>For health, safety and environmental information, please contact:</th>
<th>For technical or purchasing information, please contact:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Stewardship Manager Product Safety Steward Europe</td>
<td>UOP N.V. Noorderlaan 147 B-2030 Antwerpen Belgium</td>
</tr>
<tr>
<td>UOP LLC 25 E. Algonquin Road Des Plaines IL 60017-5017 USA</td>
<td>Tel: +32 (3) 5409 971 Fax: +32 (3) 5417 806</td>
</tr>
<tr>
<td>Tel: +1 (847) 391 3189 Fax: +1 (847) 391 2953</td>
<td>UOP M.S. S.p.A. Viale Milanofiori Strada 1-Palazzo E1</td>
</tr>
<tr>
<td></td>
<td>20090 Assago Mi Italy Tel: +39 (02) 892241 Fax: +39 (02) 57500145</td>
</tr>
</tbody>
</table>

Product Emergencies

If you have a product-related emergency, resulting in an incident such as a spill or release of product or human exposure and need assistance from UOP, please contact the following number:

24-Hour EMERGENCY NUMBER (BIG): +32 14 58 45 45

The data and recommendations presented in this data sheet concerning the use of our product and the materials contained therein are believed to be accurate and are based on information, which is considered reliable as of the date hereof. However, the customer should determine the suitability of such materials for his purpose before adopting them on a commercial scale. Since the use of our products by others is beyond our control, no guarantee, express or implied, is made and no responsibility assumed for the use of this material or the results to be obtained there from. Information on this form is furnished for the purpose of compliance with Government Health and Safety regulations and shall not be used for any other purposes. Moreover, the recommendations contained in this data sheet are not to be construed as a license to operate under, or a recommendation to infringe, any existing patents, nor should they be confused with state, municipal or insurance requirements, or with national safety codes.
The following is the factory-recommended packing procedure for the Chameleon Ultra and Chameleon Vision laser systems. This procedure must be followed if the Chameleon Ultra or Chameleon Vision system is to be shipped to another location after initial installation.

The Chameleon Ultra and Chameleon Vision laser systems require one shipping crate. Table B-1 lists the contents of the shipping crate when the system is shipped from Coherent.

The Chameleon Ultra or Chameleon Vision system crate consists of a single molded foam compartment. To prevent ESD damage, the compartment must be lined with anti-static material before placing the laser head and power supply into the crate. The excess anti-static material should be folded over to cover and protect the top of the power supply.

Table B-1. Chameleon Ultra and Chameleon Vision Shipping Crate Contents

<table>
<thead>
<tr>
<th>1. Laser head</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Power supply</td>
</tr>
<tr>
<td>Packed separately:</td>
</tr>
<tr>
<td>3. Chiller, Hoses (2), Optishield Corrosion Inhibitor</td>
</tr>
<tr>
<td>4. Accessories kit: System fuses (2), Diode shorting clip (2), Fiber optic cable end caps (2), Diode fiber connector end caps, External interlock plug (shorted), External interlock plug (disassembled), BNC-BNC cable (synch out), USB cable (spectrometer), M6 table screws and washers (3), 1/4-20 screws and washers (3), Chameleon Ultra feet clamps (3), RS-232 serial cable, RS-232 serial extension cable, Chameleon Ultra test sheet, Operator’s manual, Cooling water draining hose, Graphic user interface (GUI) CD ROM</td>
</tr>
<tr>
<td>5. MRU X1, Hoses (2), DIN-DIN Interlock cable, H10 Interlock plug (shorted)</td>
</tr>
</tbody>
</table>

Coherent recommends that three people work together to pack the Chameleon Ultra or Chameleon Vision. The laser head and power supply are connected by the umbilical. To prevent damage to the fiber optic delivery cables running between the head and the power supply, the umbilical should be wound loosely in the foam cutout as illustrated in Figure B-1.
The Chameleon system is shipped with the fibers connected at both ends. Excessively tight fiber bends (less than a 5-inch radius) can cause permanent damage to the fiber optic cables.

Place the Chameleon Ultra or Chameleon Vision in the shipping crate as follows:

1. Place the laser head in the cutout as shown in Figure B-1. The laser head is heavy and should always be handled by two people.

2. The power supply should also be handled by two people. To get the umbilical to lie properly in the foam cutout, carry the power supply clockwise around the crate. Then place the power supply in the foam cutout as shown in Figure B-1. At this point a third person can help by guiding the umbilical into the cutout.

Once all components are placed into the shipping crate, the top foam should be positioned.

When shipping the entire system, always be sure to place the MRU and the chiller in their appropriate shipping containers as delivered.
Table C-1. Parts List

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAJOR ASSEMBLIES</td>
<td></td>
</tr>
<tr>
<td>Chameleion Ultra and Chameleion Vision System Chiller</td>
<td>1112788</td>
</tr>
<tr>
<td>FAP-I Replacement Kit (containing one FAP-I)</td>
<td>1063072</td>
</tr>
<tr>
<td>MRU X1</td>
<td>1133533</td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
<td></td>
</tr>
<tr>
<td>Fuses:</td>
<td></td>
</tr>
<tr>
<td>10 A (for 220VAC range operation)</td>
<td>5100-0072</td>
</tr>
<tr>
<td>15 A (for 100VAC range operation)</td>
<td>5110-0002</td>
</tr>
<tr>
<td>Power Supply Rack Mount Kit</td>
<td>0172-720-02</td>
</tr>
<tr>
<td>Set of Three Foot Clamps</td>
<td>1063543</td>
</tr>
<tr>
<td>Water Hose Kit</td>
<td>1094710</td>
</tr>
<tr>
<td>Pure Air Hose Kit</td>
<td>1040787</td>
</tr>
<tr>
<td>Shipping Crate</td>
<td>1047197</td>
</tr>
<tr>
<td>Optishield Plus, 1 Pint</td>
<td>1050571</td>
</tr>
<tr>
<td>Accessory Kit</td>
<td>1099984</td>
</tr>
<tr>
<td>MRU X1</td>
<td></td>
</tr>
<tr>
<td>PSU Interlock, M/M 4 meter 3pMiniDin Cable Assembly</td>
<td>1070518</td>
</tr>
<tr>
<td>Plug Assembly:</td>
<td></td>
</tr>
<tr>
<td> External Interlock Over-Ride</td>
<td>1070517</td>
</tr>
<tr>
<td>Spare Filters:</td>
<td></td>
</tr>
<tr>
<td> HEPA Polypro Capsule: MRU</td>
<td>1049763</td>
</tr>
<tr>
<td> Drierite Cylinder</td>
<td>1051489</td>
</tr>
</tbody>
</table>
Coherent offers a variety of instruments for laser test and measurement. For additional detailed information, including product selection guides, please visit our web site at www.Coherent.com.

Coherent’s Recommendation

For the most common diagnostics, Coherent recommends the FieldMaxII™-TO power meter with a LM-10 HTD power sensor to measure the Chameleon Ultra and Chameleon Vision laser output. This combination of power meter and power sensor is ideal for most Diode Pumped Solid State (DPSS) products.

The power meter is a versatile, easy to use digital meter designed for field service and production applications. The power sensor is air-cooled, surface absorbing and intended for low Pulsed and CW powers up to 10 Watts covering a broad spectrum of wavelengths from 0.25 µm to 10.6 µm.

<table>
<thead>
<tr>
<th>FieldMaxII-TO Power Meter</th>
<th>Part Number 1098579</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM-10 HTD Power Sensor</td>
<td>Part Number 1098579</td>
</tr>
</tbody>
</table>
Coherent, Inc. warrants the Chameleon Ultra and Chameleon Vision laser systems to the original purchaser (the Buyer) only, that the laser system, that is the subject of this sale, (a) conforms to Coherent's published specifications and (b) is free from defects in materials and workmanship.

Laser systems are warranted to conform to Coherent's published specifications and to be free from defects in materials and workmanship for a period of 12 months or 5000 hours of operation, whichever occurs first.

Responsibilities of the Buyer

The buyer is responsible for providing the appropriate utilities and a dust-free, temperature regulated operating environment as outlined in the product literature. Damage to the laser system caused by failure of buyer's utilities or failure to maintain an appropriate operating environment, is solely the responsibility of the buyer and is specifically excluded from any warranty, warranty extension, or service agreement.

The Buyer is responsible for prompt notification to Coherent of any claims made under warranty. In no event is Coherent responsible for warranty claims made later than seven (7) days after the expiration of warranty.

Limitations of Warranty

The foregoing warranty shall not apply to defects resulting from:

- Components and accessories manufactured by companies, other than Coherent, which have separate warranties,
- Improper or inadequate maintenance by the buyer,
- Buyer-supplied interfacing,
- Operation outside the environmental specifications of the product,
- Unauthorized modification or misuse,
- Improper site preparation and maintenance,
- Opening the pump laser head housing, or
- Opening the sealed UF cavity housing.
Coherent assumes no liability for customer-supplied material. The obligations of Coherent are limited to repairing or replacing, without charge, equipment that proves to be defective during the warranty period. Replacement sub-assemblies may contain reconditioned parts. Repaired or replaced parts are warranted for the duration of the original warranty period only. The warranty on parts purchased after expiration of system warranty is ninety (90) days. Our warranty does not cover damage due to misuse, negligence or accidents, or damage due to installations, repairs or adjustments not specifically authorized by Coherent.

Warranty applies only to the original purchaser at the initial installation point in the country of purchase, unless otherwise specified in the sales contract. Warranty is transferable to another location or to another customer only by special agreement that includes additional inspection or installation at the new site. Coherent disclaims any responsibility to provide product warranty, technical or service support to a customer that acquires products from someone other than Coherent or an authorized representative.

THIS WARRANTY IS EXCLUSIVE IN LIEU OF ALL OTHER WARRANTIES, WHETHER WRITTEN, ORAL OR IMPLIED, AND DOES NOT COVER INCIDENTAL OR CONSEQUENTIAL LOSS. COHERENT SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>°F</td>
<td>Degrees Fahrenheit</td>
</tr>
<tr>
<td>µ</td>
<td>Microns</td>
</tr>
<tr>
<td>µrad</td>
<td>Microradian(s)</td>
</tr>
<tr>
<td>µsec</td>
<td>Microsecond(s)</td>
</tr>
<tr>
<td>1/e²</td>
<td>Beam diameter parameter</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating current</td>
</tr>
<tr>
<td>Amp</td>
<td>Amperes</td>
</tr>
<tr>
<td>AS</td>
<td>Aqueous slurry</td>
</tr>
<tr>
<td>CDRH</td>
<td>Center for Devices and Radiological Health</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulation</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter(s)</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>EC</td>
<td>European community</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrically erasable programmable read only memory</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic compliance</td>
</tr>
<tr>
<td>FAP-™</td>
<td>Fiber array package-integrated</td>
</tr>
<tr>
<td>FD</td>
<td>Fine dust</td>
</tr>
<tr>
<td>FSR</td>
<td>Free spectral range</td>
</tr>
<tr>
<td>Fu</td>
<td>Fume</td>
</tr>
<tr>
<td>FuD</td>
<td>Fume and dust</td>
</tr>
<tr>
<td>I</td>
<td>Inhalable</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
<tr>
<td>IC</td>
<td>Insoluble compounds</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/output</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram(s)</td>
</tr>
<tr>
<td>LBO</td>
<td>Lithium Triborate, LiB<sub>3</sub>O<sub>5</sub></td>
</tr>
<tr>
<td>LD</td>
<td>Laser diode</td>
</tr>
<tr>
<td>LED</td>
<td>Light emitting diode</td>
</tr>
<tr>
<td>LVD</td>
<td>Low voltage directive</td>
</tr>
<tr>
<td>m</td>
<td>Meter(s)</td>
</tr>
<tr>
<td>MAC</td>
<td>Maximal Arbeidsplaats Concentratie</td>
</tr>
<tr>
<td>MAK</td>
<td>Maximal Arbeitsplatz-Konzentration</td>
</tr>
<tr>
<td>mAmp</td>
<td>Milliampere(s)</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter(s)</td>
</tr>
<tr>
<td>mrad</td>
<td>Milliradian(s)</td>
</tr>
<tr>
<td>msec</td>
<td>Millisecond(s)</td>
</tr>
<tr>
<td>mV</td>
<td>Millivolt(s)</td>
</tr>
<tr>
<td>mW</td>
<td>Milliwatt(s)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>N.A.</td>
<td>Not applicable</td>
</tr>
<tr>
<td>N.E.</td>
<td>None established</td>
</tr>
<tr>
<td>N.D.</td>
<td>None determined</td>
</tr>
<tr>
<td>NDM</td>
<td>Negative dispersive mirror</td>
</tr>
<tr>
<td>Nd:YVO</td>
<td>Neodymium:Gadolinium Orthovanadate</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer(s)</td>
</tr>
<tr>
<td>OEL/MEL</td>
<td>Occupational exposure standard/maximum exposure limit</td>
</tr>
<tr>
<td>OEM</td>
<td>Original equipment manufacturer</td>
</tr>
<tr>
<td>rms</td>
<td>Root mean square</td>
</tr>
<tr>
<td>TD</td>
<td>Total dust</td>
</tr>
<tr>
<td>TEC</td>
<td>Thermo-electric cooler</td>
</tr>
<tr>
<td>TEM</td>
<td>Transverse electromagnetic (cross-sectional laser beam mode)</td>
</tr>
<tr>
<td>TWA</td>
<td>Time-weighted average</td>
</tr>
<tr>
<td>R</td>
<td>Respirable</td>
</tr>
<tr>
<td>SC</td>
<td>Soluble compounds</td>
</tr>
<tr>
<td>STEL</td>
<td>Short-term exposure limit</td>
</tr>
<tr>
<td>VAC</td>
<td>Volts, alternating current</td>
</tr>
<tr>
<td>VDC</td>
<td>Volts, direct current</td>
</tr>
<tr>
<td>VME</td>
<td>des Valeurs limits de Moyenne d'Exposition</td>
</tr>
<tr>
<td>VPUF</td>
<td>Verdi-Pumped UltraFast</td>
</tr>
<tr>
<td>W</td>
<td>Watt(s)</td>
</tr>
</tbody>
</table>
Index

A
- Accessories D-1
- Air filter 4-8, 6-9
 - Cleaning procedure 6-30
- Amplification
 - Preparing atoms - pumping 7-2
- Autocorrelation 7-17
 - Background-free, by non-collinear phase matching 7-21
 - Concept of 7-20
 - Optical schematic diagram 7-19
 - Traces, interpretation of 7-24
- Average power 1-7

B
- Bandwidth (Hz) 7-26
- Battery replacement 6-29
- Beam
 - Cross section 7-6
 - Geometry 7-6

C
- Calibration and real-time display 7-22
- CDRH compliance
 - Beam attenuator 2-3
 - Laser classification 2-3
 - Laser radiation emission indicators 2-3
 - Operating controls 2-3
 - Protective housing 2-3
- Chiller
 - Installation 3-12
- Chiller requirements 3-3
- Chirp
 - Definition 7-12
 - Negative, blue frequency 7-13
 - Positive, red frequency 7-13
- Computer 5-1
- Computer control (see external computer control)
- Controls and indicators
 - Laser head 4-6
 - MRU XI A-11
 - Power supply 4-8
- Cooling requirements 3-3

D
- Description and Specifications A-1
- Desiccant A-16
- Dimensions
 - MRU XI A-12
 - System 3-4
- Diode/heat sink temperature 6-9, 7-29
- Dispersion
 - Anomalous 7-11
 - Compensation 7-14
 - Curve 7-11
 - Normal 7-11
- Drierite A-4
 - Characteristics A-20
 - Control measures A-22
 - First aid A-21
 - Hazard data A-20
 - Health hazard data A-21
 - Ingredients A-19
 - MSDS A-19
 - Reactivity data A-20
 - References A-22
 - Spill Procedures A-22

E
- Electromagnetic compatibility
 - MRU XI A-5
- Envelope function, equation 7-20
- Environmental requirements
 - Altitude 3-3
 - Operating temperature 3-3
 - Relative humidity 3-3
- External computer control
 - Interface to the Verdi 5-1
 - Response from Laser after Receiving Instruction 5-2
 - RS-232 command language 5-1
- External interlock 3-1

F
- FAP-I 1-6, 7-28
- Handling precautions 6-15
- Installation 6-19
- Removal 6-18
- Replacement 6-14
- Fault handling 4-10
- Fault messages 6-1
- Features A-2
- Fiber optic cable
 - Handling precautions 6-17
- First aid
 - Molecular Sieve 4A A-24
- Fourier Transform
 - of E'(t), equation 7-26
 - of E(t), equation 7-26
- Fuse replacement 6-28
G
Gain medium 7-2
Gradient index lens 7-7
Group velocity dispersion 7-11, 7-13
 Derivative 7-12
 See also GVD
GVD 7-11
 Changing 7-15
 Compensation 7-15

H
Hazards
 Molecular Sieve 4A A-24

I
Index of refraction 7-7
Installation 3-1
 Chiller 3-12
 Considerations 3-7
 Environmental requirements 3-3
 External interlock 3-1
 Laser head 3-9
 MRU X1 3-11
 Power supply 3-9
 Receiving and inspection 3-1
 Umbilical connections 3-9
 Utility requirements 3-3
Instruction set 5-6
Instruction syntax for RS-232 communication 5-1
Interface connectors 4-8
Interface to the Verdi 5-1
Interlock circuit checkout A-15
Interlocks 3-1

K
Kerr lens 7-7
Keyswitch 4-9

L
Laser diodes 1-6, 7-28
Laser head 1-3, 7-1
 Features 4-6
 Installation 3-9
 Verdi 7-17
 VPUF 7-1
Light
 Intensity of with varying number of modes 7-9
Line voltage requirements 3-3
Longitudinal modes 7-2
Low power warning 4-11, 4-13

M
M2 1-7
Maintenance
 Battery replacement 6-29
 Cleaning the air filter 6-30
 Desiccant filter A-16

FAP-I replacement 6-14
Molecular sieve filter exchange A-17
Maintenance and troubleshooting 6-1
Menu displays 4-10
Miniature recirculating unit 1-5
Mode
 Longitudinal 7-2
 Transverse 7-3
Modelock
 Active 7-4
 Origin of the term 7-8
 Passive 7-5
 Theory of 7-3
Modulation
 Self phase 7-13
Molecular Sieve 4A A-4
 Abbreviations A-31
 Disposal A-29
 Ecological information A-28
 Exposure controls A-26
 Exposure limit A-26
 Fire fighting measures A-25
 First aid A-24
 Handling A-25
 Hazards A-24
 Ingredients A-24
 MSDS A-23
 MSDS regulation A-30
 Properties
 Chemical A-27
 Physical A-27
 Release measures A-25
 Stability A-27
 Toxicological information A-28
 Transport A-29
MRU X1 1-5
 Abbreviations A-31
 Air Connections A-6
 Air ports A-13
 CE Compatibility A-5
 Components, internal A-17
 Contact information A-32
 Controls
 Front Panel A-12
 Rear Panel A-13
 Controls & indicators A-11
 Description A-1
 Desiccant filter A-16
 Dimensions A-12
 External Connections A-6
 Features A-2, A-11
 Image A-1
 Installation 3-11, A-6
 Interlocks A-13
 Mains Power Input A-14
Maintenance A-15
 Fuse replacement A-18
 HEPA filter replacement A-18
Operating Controls A-4
Parameters 1-5, 3-3
Receiving & inspection A-6
Safety A-4
 Chemical A-4
Specifications A-1, A-3
Troubleshooting A-15
MSDS A-4
 Molecular sieve 4A A-23

N
Noise 1-7

O
Operation 4-1
 Fault handling 4-10, 4-11, 4-13
 Laser head features 4-6
 Menu displays 4-10
 MRU X1 features A-11
 Power supply 4-8
 Turn-off (Daily use) 4-4
 Turn-on (Daily warm-start) 4-2
Optical Kerr effect 7-7
Optical schematic
 Chameleon laser head 1-3
 Overview 7-18

P
Phase matching, non-collinear 7-21
Power cord 4-9
Power stability 1-7
Power supply 1-5, 1-6, 7-27
 Controls and indicators 4-8
 Installation 3-9
PowerTrack 1-4, 7-17
Principles of operation
 Laser diodes 7-28
 Power supply 7-27
 PowerTrack 7-17
Pulse
 Broadening, comparison of in fused silica, BK7, and SF10 for 100 fs pulse 7-16
 Formation of 7-4
 Transmission of ultrashort pulses of light through glass 7-11
 Ultrashort, propagation of through optical materials 7-16
 Width
 Formation of final 7-16
Pulsewidth 1-7
Pumping
 Preparing the atoms for amplification 7-2

R
Radiated emission compliance 2-4
Real-time display and calibration 7-22
Receiving and inspection 3-1
Red frequency
 Positive chirp 7-13
Refraction 7-7
Refractive index curve 7-11
Repetition rate 1-7
Response of the PMT to the incident light, equation 7-20
RS-232
 Command language 5-1
 ECHO mode 5-3
 PROMPT mode 5-3
 Instruction syntax communications 5-1
 Interface connection 5-4
 Pin configuration 5-4
 Port configuration 5-4
 Port description 5-4

S
Safety
 Features and compliance to government requirements 2-2
 Features and labels, location of 2-4
 Labels, location of 2-4
 MRU X1 A-4
 Chemical A-4
 Optical safety 2-1
 Safety labels, location of 2-4
 Saturable absorber system 7-6
 Self phase modulation 7-13
 Servo loops 1-6
 Setting the baud rate 5-5
 Soliton 7-16
 formation 7-16
 Specifications 1-7
 Starter mechanism 7-10
 Symbols
 Caution -xiii
 Electrical warning -xiii
 ESD -xiii
 Radiation warning -xiii
 System description 1-1
 System dimensions 3-4
 System Status Messages 4-10
 System weights 3-4

T
Thermal management
 Baseplate temperature 1-4
 Diode/heat sink temperature 7-29
 Third integral of the pulse formed from two light paths 7-22
 Time resolution 7-23
Time-Bandwidth Products
 For typical model pulse shapes 7-25
Time-bandwidth products 7-26
Time-dependent electric field 7-26
Transverse mode 7-3
Troubleshooting 6-1
 Fault messages 6-1
 Fuse replacement 6-28
Turn-off 4-4
 Daily use 4-4
Turn-on 4-1
 Warm start 4-2
U
 Umbilical 1-7
 Umbilical connections 3-9

Utility requirements 3-3
 Cooling 3-3
 Maximum current 3-3
 Power requirements 3-3
V
 Vector equation 7-21
 Verdi laser head 1-3, 7-17
 VPUF 1-4
 Laser head 7-1
W
 Warning symbols -xiii
 Warranty E-1
 Wavelength 1-7
 Weights system 3-4